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Abstract: Cancelable biometrics addresses biometric data’s privacy and security concerns. We present two new 

cancelable biometrics template generation methods: RP-RegSt and RP-RegSb. The suggested approaches use 

random permutations and regularized eigenfeature extraction to generate cancelable biometrics templates, which 

can be reissued if compromised. We also show that applying random permutation to generate cancelable biometric 

templates enhances recognition accuracy. The suggested approaches are tested on six publicly accessible 

databases: three iris databases (UBIRIS.v1, CASIA-V1, and IITD Iris), two face databases (Georgia Tech and AT&T), 

and one ear database (IITD Ear). The superiority of the proposed methods is demonstrated by comparing them to 

three state-of-the-art random permutation-based cancelable biometric template generation techniques. The 

suggested approaches’ performance on challenging databases with substantial biometric image variation, such as 

Georgia Tech and UBIRIS, shows their robustness and efficacy. The privacy concern is addressed as the templates 

are irreversible (non-invertible) and immune to imposter attacks, while brute force analysis shows the templates are 

secure. The templates satisfy the diversity (unlinkability) and revocability properties. 

Keywords: Random Permutation, Cancelable Biometrics, Template Protection, Non-invertible Transformation 

 

1. Introduction 

Use of biometrics in user authentication 

effectively addresses the issue of distinguishing 

between authorized and unauthorized users having 

stolen/shared passwords, tokens, etc. This is due to the 

inherent nature of biometric characteristics, such as 

fingerprints [1] or facial features [2], which are unique to 

each individual and cannot be shared or replicated. 

However, the uniqueness and permanent association of 

biometric information with a person presents significant 

concerns about the privacy and security [3]. The intruder 

can get easy access to the user’s biometric information. 

For example, fingerprints can be traced from a user’s 

drinking glass, and the face or iris can be stolen from 

images from social media or other uploads. Biometric 

cryptosystems provide security for biometric data 

through encryption and decryption techniques. These 

techniques require data decryption for matching and do 

not allow for matching query images in the encrypted 

domain [4]. To alleviate these problems, the concept of 

cancelable biometrics (CB) has been introduced [5]. “It 

consists of an intentional, repeatable distortion of the 

biometric signal based on a chosen transform.” In the 

context of cancelable biometrics (CB), the biometric data 

undergoes a conversion process in a different domain 

through a non-invertible transformation. This 

transformation ensures that the information in the 

converted domain does not disclose any significant 

details about the original biometric data. Furthermore, 

performing matching operations on query images within 

the transformed domain remains feasible. 

There are four fundamental characteristics of 

the cancelable biometric template [6, 7]: 

 Non-invertibility: Transformation should be non-

invertible to safeguard biometric data. 

 Renewability/Cancelability: The old template 

should be canceled, and the new template 

should be renewed in case of compromise. 

 Diversity/Unlinkability: Templates 

corresponding to the same biometrics should 

not correlate in different applications. 

 Performance: The conversion of biometric data 

to a cancelable template should preserve 
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discriminatory information so that it does not 

lead to deterioration in recognition performance. 

The fundamental characteristic of non-

invertibility can be attained by two methods: non-

invertible transform approaches and biometric salting 

[8]. It is important to note that the former approach 

involves applying a noninvertible transformation to the 

biometric data to generate a template that cannot be 

inverted. Furthermore, the second approach transforms 

the original biometric data into a cancelable template by 

adding random noises or patterns (person-specific), 

which may increase the discriminating power of the 

biometric data and protect the template from potential 

misuse [4]. However, biometric salting transformations 

are invertible [9]. The application of cancelable biometric 

schemes is not only limited to user authentication but 

includes non-invertible key creation that can be 

transferred on an unsecured network [10], safeguarding 

sensitive data of patients, surveillance, corpse 

identification, etc. 

One of the main problems in dealing with 

biometric images is the high dimensionality, as we 

consider each pixel’s intensity value as a separate 

feature. For example, a simple grayscale image with a 

resolution of 500 × 500 has 250,000 features. Working 

with such high dimensions leads to the problem of the 

curse of dimensionality [11]. Some major disadvantages 

of working in such high dimensionality include a) 

overfitting of the training data, b) high computational 

complexity, and c) making it challenging to find the 

pattern. The curse of dimensionality is often referred to 

as the small sample size (SSS) problem because the 

number of samples (total number of images in our case) 

is much lower than the number of features (number of 

pixels in the image) per sample [12]. Many techniques 

are given in the literature to deal with this problem such 

as Principal Component Analysis (PCA) [13, 14], 

Bayesian Maximum Likelihood (BML) [15], Independent 

Component Analysis (ICA) [16, 17], Locality Preserving 

Projection (LPP) [18], and Linear Discriminant Analysis 

(LDA) [19]. These techniques are not only used for 

dimensionality reduction but are also used for face 

recognition. PCA and LDA are the most popular. PCA 

aims to find the dimensions where the variance is 

captured maximum, while LDA seeks to find the 

directions where maximum separability is captured. It 

has been proven that Fisher’s LDA is better than PCA 

for class separability [14]. To maximize the separability, 

LDA aims to minimize the within-class scatter while 

maximizing the between-class scatter. It uses the 

inverse of the within-class matrix for this, but because of 

SSS problem, it often results in a singular within-class 

matrix [20]. 

 

1.1 Motivation and Research Gaps 

The PCA, LPP, and LDA were successfully used 

in cancelable biometrics to transform the biometric 

images into cancelable templates. For example, random 

permutation principal component analysis (RP-PCA) 

and random permutation two-dimensional principal 

component analysis (RP-2DPCA) use PCA and 2DPCA 

[3], random permutation-based linear discriminant 

analysis (RPLDA) uses LDA [21], and random 

permutation-based locality preserving projection (RP-

LPP) uses locality preserving projection [22]. All of these 

cancelable biometric template generation methods solve 

the problem of the curse of dimensionality (also known 

as SSS) by reducing the dimension using the techniques 

as mentioned above. The singular within-class matrix 

issue is not addressed while applying LDA for the 

cancelable biometrics in [21]. The issue of the singularity 

in the within class matrix is addressed in face recognition 

in Fisher’s LDA (FLDA) [14], Direct LDA (DLDA) [23], the 

Null space method or NLDA [24], etc. However, these 

techniques either ignore the null subspace or focus only 

on the null subspace. Eigenfeature regularization and 

Extraction (ERE) [25] is proposed for face recognition 

and decomposes the eigenspace of the within-class 

matrix into three subspaces: face, noise, and null 

subspace. The proposed work solves the issue of a 

singular within-class matrix of LDA in cancelable 

biometrics using ERE and tries to answer the following 

research questions: 

 Is it feasible to use the concept of eigenfeature 

regularization and extraction in cancelable 

biometrics? 

 Does the application of eigenfeature 

regularization in cancelable biometrics work for 

biometric traits other than the face, like an iris or 

an ear? 

 How does applying random permutation with 

eigenfeature regularization affect the 

recognition accuracy? 

 

1.2 Contribution 

This paper suggests two novel cancelable 

biometric template generation methods based on 

random permutation and regularized eigenfeatures. The 

methods are two-factor authentication methods, where 

the person must enter the correct key/Personal 

Identification Number (PIN) along with the presented 

biometrics. We have made the following contributions to 

the field of cancelable biometrics as a result of our 

research efforts: 

 Two new cancelable biometrics approaches to 

generate the cancelable biometric templates 

using random permutation with eigenfeature 

regularization and extraction. 

 We have shown that the random permutation 

improves classification accuracy apart from 

offering cancelability. 
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 The proposed methods are not modality-specific 

rather can be used for other modalities. 

 The proposed approaches surpass the 

recognition performance of the other baseline 

approaches that generate cancelable biometric 

templates based on random permutation. 

The rest of the paper is divided into five more 

sections. The literature related to the proposed methods 

is discussed in Section 2, where subsection 2.1 

discusses using a random permutation to generate 

cancelable biometric templates. Section 2.2 discusses 

regularizing eigenfeatures, feature extraction, and 

dimensionality reduction. Section 3 presents the 

proposed method, which uses eigenfeature 

regularization with random permutation for cancelable 

biometrics template generation in detail. The 

experimental setup is described in Section 4, which 

gives the complete details of biometric image databases 

used to assess the proposed method. Section 5 

analyses the experiments’ results, where the proposed 

methods are compared with other random permutation-

based methods to generate the cancelable template. In 

section 6, we give the proposed work’s conclusions and 

future research directions. 

 

2. Related Work 

The literature uses various approaches for 

template generation. The cancelable biometric 

approaches can be classified into ten distinct types [26] 

(i) Non-invertible Geometric Transforms, (ii) Random 

Projections, (iii) Cancelable Biometric Filters, (iv) 

Bioconvolving, (v) Bloom Filters, (vi) Knowledge 

Signatures, (vii) Biohashing Methods, (viii) Random 

Permutations, (ix) Salting Methods, and (x) Hybrid 

Methods. Preserving discriminating information in the 

resulting template is difficult in most categories, except 

random permutation-based approaches [22]. 

 

2.1 Random Permutation in Cancelable 

Biometrics 

The application of random permutation in 

cancelable biometrics was first introduced in two 

techniques, i.e. GRAY-COMBO and BIN-COMBO [27]. 

The method GRAY-COMBO is used to generate a 

cancelable template for grayscale iris images, whereas 

the BIN-COMBO is used for binary images. In the first 

method, GRAYCOMBO, the rows are shifted circularly in 

the horizontal direction using the random offset. Then, 

the randomly selected rows are combined using the 

addition or multiplication operation. The random offset 

and random selection of rows are person-specific. In 

BIN-COMBO, the template is generated similarly to the 

first method, except that the XOR/XNOR operation 

combines the randomly selected rows in place of 

addition/multiplication. 

The random permutation is also used in RPPCA 

[3], RP-2DPCA [3], RP-LPP [22], and RPLDA [21]. The 

cryptic pattern is generated first using a random 

permutation matrix, and features are then extracted to 

reduce the dimensions and make the template non-

invertible using PCA, LPP, and LDA in RP-PCA, RP-

LPP, and RPLDA, respectively. In another approach 

called random permutation max out (RPM) [28], RPM 

transforms a continuous face feature vector into a max-

ranked indices vector as a cancelable template using a 

person-specific stacked permutation array. In a different 

approach, the fingerprint vectors are first converted into 

a binary string and then randomly permuted to generate 

the cancelable fingerprint template [1]. In recent work, 

the random permutation-based linear regression for 

cancelable biometrics (RP-LRCB) [29] first generates a 

virtual image using linear regression. Then, a cancelable 

template is generated using random permutation from 

the virtual image. 

 

2.2 Eigenfeature Regularization and Features 

Extraction 

In this section, the process of eigenfeature 

regularization is discussed in detail. The algorithm of 

eigenfeature regularization and extraction (ERE) is given 

in [25]. It mainly consists of the following six steps: 

1 Computing within-class matrix from the training 

data. 

2 Extraction of eigenfeatures. 

3 Regularization of eigenvalues. 

4 Transforming the training set. 

5 Extracting the eigenvectors from transformed 

data. 

6 Dimension reduction and feature extraction. 

Let the training set contain 𝑁 different classes, 

where each class represents a person and each having 

𝑚 biometric images of size 𝑤 × ℎ. The training set’s total 

number of images is 𝑛 = 𝑁 ×𝑚. The column vector 𝑥𝑖𝑗 

is used to represent the 𝑗𝑡ℎbiometric image of 𝑖𝑡ℎ  person 

and 𝑥𝑖𝑗 ∈ ℝ
𝑞=𝑤×ℎ.  

 

2.2.1 Computing within-class matrix 

The within class matrix minimizes the intra-class 

variance in the linear discriminant analysis. Assuming all 

classes have equal prior probability i.e. 𝑝𝑖 =
1

𝑁
, then the 

within-class scatter matrix, S𝑤, is defined as [25]: 

S𝑤 = ∑
𝑝𝑖

𝑚

𝑁
𝑖=1 ∑ (𝑥𝑖𝑗 − 𝑥‾𝑖)

𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑥‾𝑖)

𝑇
 (1)  

where 𝑥‾𝑖 =
1

𝑚
∑ 𝑥𝑖𝑗
𝑚
𝑗=1  represents the mean 

image of each class. 
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2.2.2 Extraction of eigenfeatures 

The eigendecomposition of S𝑤 is used to obtain 

the diagonal matrix 𝛬  containing eigenvalues 

[𝜆1, 𝜆2, . . . , 𝜆𝑞] and the matrix 𝛩 containing eigenvectors 

[𝜃1𝜃2…𝜃𝑞]. The 𝛬and the associated 𝛩 are sorted in the 

decreasing order of eigenvalues. 

 

2.2.3 Regularization of eigenvalues 

The eigenspace of S𝑤  is then decomposed into 

face subspace ( F = {𝜃𝑘}𝑘=0
𝑚 ), noise subspace ( N =

{𝜃𝑘}𝑘=𝑚+1
𝑟 ), and null subspace (⌀ = {𝜃𝑘}𝑘=𝑟+1

𝑞
). The 𝑟 is 

the rank of the matrix, for𝑆𝑡 , 𝑟 ≤ 𝑚𝑖𝑛(𝑞, 𝑛 − 1), for 𝑆𝑏 , 

𝑟 ≤ 𝑚𝑖𝑛(𝑞, 𝑁 − 1), and for 𝑆𝑤, 𝑟 ≤ 𝑚𝑖𝑛(𝑞, 𝑛 − 𝑁). The 𝑆𝑡 

and 𝑆𝑏  are the total scatter and between-class scatter 

matrices. The noise subspace starts with 𝑚 + 1𝑡ℎ 

eigenvalue of the within-class scatter matrix, which can 

be calculated as : 

𝜆𝑚+1
𝑤 = 𝑚𝑎𝑥{∀𝜆𝑘

𝑤|𝜆𝑘
𝑤 < (𝜆𝑚𝑒𝑑

𝑤 + 𝜇(𝜆𝑚𝑒𝑑
𝑤 − 𝜆𝑟

𝑤))} (2) 

where 𝜆𝑚𝑒𝑑
𝑤  is the median eigenvalue of the face 

& noise subspace and calculated as 𝜆𝑚𝑒𝑑
𝑤 =

𝑚𝑒𝑑𝑖𝑎𝑛{𝜆𝑘
𝑤|𝑘 ≤ 𝑟}. The 𝜇 is the constant and is taken as 

1. The variation of the face component in the face 

subspace is high, in the noise subspace it is very low, 

and almost zero in the null space. Therefore, the weights 

with the face structural components are added to the 

noise and null subspace. The two constants 𝛼 and 𝛽 for 

the eigenvalue regularization are computed as follows: 

𝛼 =
𝜆1
𝑤𝜆𝑚

𝑤 (𝑚−1)

𝜆1
𝑤−𝜆𝑚

𝑤 , 𝛽 =
𝑚𝜆𝑚

𝑤−𝜆1
𝑤

𝜆1
𝑤−𝜆𝑚

𝑤     (3) 

The eigenvalues of the within-class matrix S𝑤 

can be regularized using the constants 𝛼 and 𝛽 obtained 

in equation (3) in the following manner [25]: 

𝜆
~

𝑘
𝑤 =

{
 

 
𝜆𝑘
𝑤  , 𝑘 < 𝑚

𝛼

𝑘+𝛽
, 𝑚 ≤ 𝑘 ≤ 𝑟 

𝛼

𝑟+1+𝛽
, 𝑟 < 𝑘 ≤ 𝑞

     (4) 

 

2.2.4 Transforming the training set 

After regularizing the eigenvalues, the 

corresponding weights are computed as follows [25]: 

𝑤𝑘
𝑤 =

1

√𝜆
~

𝑘
𝑤
𝑘 = 1, . . . , 𝑞    (5) 

The weighted eigenvectors are now used to 

transform the training set 𝑋 as: 

 𝑌 = 𝛩
~

𝑤
𝑇𝑋      (6) 

where the weighted eigenvectors are 𝛩
~

𝑤 = 

[𝑤𝑘
𝑤𝜃𝑘

𝑤]𝑘=1
𝑞

= {𝑤1
𝑤𝜃1

𝑤 , 𝑤2
𝑤𝜃2

𝑤 , . . . , 𝑤𝑞
𝑤𝜃𝑞

𝑤}and 𝑋  is 

the training set. 

 

2.2.5 Extracting the eigenvectors from transformed 

data 

Now, the transformed training set 𝑌  containing 

regularized eigenfeatures is used to extract the features 

using the total scatter matrix and between-class scatter 

matrix as follows: 

𝑆
~

𝑡 = ∑
𝑝𝑖

𝑚

𝑁
𝑖=1 ∑ (𝑦𝑖𝑗 − 𝑦𝑖)

𝑚
𝑗=1 (𝑦𝑖𝑗 − 𝑦𝑖)

𝑇
    (7) 

𝑆
~

𝑏 = ∑ 𝑝𝑖
𝑁
𝑖=1 (𝑦

𝑖
− 𝑦)(𝑦

𝑖
− 𝑦)𝑇    (8) 

where 𝑦𝑖𝑗 ∈ ℝ
𝑞  is a vector of 𝑌 , 𝑦‾ =

1

𝑁
𝛴𝑖=1
𝑁 𝑦‾𝑖 , 

and 𝑦‾𝑖 =
1

𝑚
𝛴𝑗=1
𝑚 𝑦𝑖𝑗. 

 

2.2.5 Dimension reduction and feature extraction 

The eigendecomposition is then applied to the 

between-class scatter matrix 𝑆
~

𝑏  and the total scatter 

matrix 𝑆
~

𝑡  to get the eigenvectors 𝛩𝑏 and 𝛩𝑡. After sorting 

the eigenvectors in the decreasing order of their 

associated eigenvalues, the first 𝑑  eigenvectors from 

𝑆
~

𝑏or 𝑆
~

𝑡  are used to reduce the dimension where 𝑑 <<

 𝑞. The reduced sets of eigenvectors are 𝛩
~

𝑏 ∈ ℝ
𝑞×𝑑and 

𝛩
~

𝑡 ∈ ℝ
𝑞×𝑑 . The feature regularization and extraction 

matrix for the between-class scatter matrix is 

constructed as follows [25]: 

𝑈𝑏 =𝛩
~

𝑤𝛩
~

𝑏    (9) 

The matrix 𝑈𝑏 ∈ ℝ
𝑞×𝑑is used to extract features 

from the original training set as: 

𝐹 = 𝑈𝑏
𝑇𝑋    (10) 

A similar feature regularization and extraction 

matrix 𝑈𝑡 ∈ ℝ
𝑞×𝑑 can be constructed using the 

eigenvectors 𝛩
~

𝑡  of the total scatter matrix, and the 

reduced features set can be extracted from the training 

set. 

 

3. The Proposed Approach  

The approaches such as RP-PCA [3], RPLDA 

[21], and RP-LPP [22] are suggested in the literature to 

generate the cancelable templates while simultaneously 

reducing the dimension. LDA outperforms PCA for large 

datasets [30]. But, because of the small sample size 

(SSS) and high dimensionality, the singular matrix 

problem arises in LDA [12]. The eigenfeature 

regularization and extraction (ERE) [25] is suggested to 

solve the singular matrix problem. In this section, we 

propose two methods to generate cancelable biometric 

templates for grayscale images using random 

permutation and eigenfeature regularization and 

extraction (ERE), which we will call RP-RegSt and RP-

RegSb. 
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3.1 Random Permuted-based Eigenfeatures 

Regularization 

The process of cancelable template generation 

comprises two phases. In the first phase, we construct a 

cryptic pattern set and transform it using regularized 

eigenfeatures. In the second phase, we generate the 

templates from the transformed cryptic pattern set. The 

complete process is described in Algorithm 1. 

Each person in the database represents a class. 

Suppose we have 𝑁 different classes in the training set, 

and a set of 𝑚 images represents each class. All the 

images in the database have the same resolution: 𝑎 ×

 𝑏  where 𝑎  and 𝑏 denote the width and height of the 

image, respectively. 

Algorithm 1: Cancelable Template Generation 

Input: Training set 𝑋 and set of keys 𝐾  

Output: Cancelable template set 𝑇 

1 For each person, compute a personalized 
Random Permutation Matrix 𝑃𝑖  using person-

specific key 𝑘𝑖 

2 Compute the set of cryptic patterns 𝑍 from the 

training set 𝑋 using 𝑃 

3 Compute the within-class matrix 𝑆𝑤
′ for the 

cryptic patterns set 𝑍 

4 Regularize the eigenfeatures of 𝑆𝑤
′  using ERE 

5 Transform 𝑍 using regularized eigenfeatures 

6 Generate template set 𝑇  using either between 
class scatter matrix or total scatter matrix 

Let 𝑗𝑡ℎ  biometric image of 𝑖𝑡ℎ  person/class be 

represented using a matrix 𝑢𝑖𝑗 ∈ ℝ
𝑎×𝑏 . The two-

dimensional images in the database are transformed 

into column vectors. Thus, 𝑢𝑖𝑗 ∈ ℝ
𝑎×𝑏 ↦ 𝑥𝑖𝑗 ∈ ℝ

𝑞×1 , 

where 𝑞 = 𝑎 × 𝑏. 

As the training set comprises 𝑚 images for each 

of the 𝑁 classes, we have a total of 𝑛 = 𝑁 ×𝑚 images. 

Thus, the training set 𝑋  is defined as a matrix in the 

following way: 

𝑋 = [𝑥11𝑥12…𝑥𝑁(𝑚−1)𝑥𝑁𝑚] ∈ ℝ
𝑞×𝑛   (11) 

and class is defined through a matrix. For 

example, 𝑖𝑡ℎclass is represented as follows: 

𝑋𝑖 = [𝑥𝑖1𝑥𝑖2…𝑥𝑖𝑚] ∈ ℝ
𝑞×𝑚 𝑖 = 1, . . . , 𝑁  (12) 

For 𝑖𝑡ℎ  class, a unique Boolean random 

permutation matrix 𝑃𝑖 ∈ 𝔹
𝑞×𝑞  is generated using their 

personalized key as the seed. The random permutation 

matrix is generated by permuting rows of the identity 

matrix. The permuted biometric image 𝑧𝑖𝑗  (also known 

as a cryptic pattern) for 𝑥𝑖𝑗 is obtained as follows: 

𝑧𝑖𝑗 = 𝑃𝑖𝑥𝑖𝑗     (13) 

Thus, the matrix 𝑍𝑖 corresponding to class 𝑋𝑖 is 

computed as the dot product of 𝑃𝑖 and 𝑋𝑖: 

𝑍𝑖 = 𝑃𝑖 ⋅ 𝑋𝑖    (14) 

The cryptic pattern matrix corresponding to the 

full training set now becomes: 

𝑍 = [𝑧11𝑧12…𝑧𝑁(𝑚−1)𝑧𝑁𝑚] ∈ ℝ
𝑞×𝑛  (15) 

The within-class matrix 𝑆𝑤
′  for the matrix of 

cryptic patterns is computed as follows:  

𝑆𝑤
′ = ∑

1

𝑛

𝑁
𝑖=1 ∑ (𝑧𝑖𝑗 − 𝑧𝑖)(𝑧𝑖𝑗 − 𝑧𝑖)

𝑇𝑚

𝑗=1
  (16) 

where 𝑧‾𝑖 =
1

𝑚
∑ 𝑧𝑖𝑗
𝑚
𝑗=1 . Next, we apply the 

eigendecomposition on 𝑆𝑤
′  to extract the eigenfeatures 

as follows: 

𝛬 = 𝛺−1𝑆𝑤
′ 𝛺    (17) 

where 𝛬  is a diagonal matrix of eigenvalues, 

say, 𝜆1, 𝜆2, . . . , 𝜆𝑞 , and 𝛺  is the matrix of eigenvectors 

(𝜔1𝜔2…𝜔𝑞). The 𝛬 and the associated vectors in 𝛺 are 

sorted in the decreasing order of eigenvalues. Following 

[25], the eigenvalues of 𝑆𝑤
′  are regularized using 

equations (2), (3), and (4), and the weights [𝑤𝑗]𝑗=1
𝑞

 are 

calculated using equation (5) to find the weighted 

eigenvectors  Ω
~

𝑤 . The matrix 𝑍  containing the cryptic 

patterns of all the classes is transformed as: 

𝑉 = Ω
~

𝑤
𝑇 𝑍    (18) 

where the weighted eigenvectors are Ω
~

𝑤  =

[𝑤𝑖𝜔𝑖]𝑖=1
𝑞

= {𝑤1𝜔1, 𝑤2𝜔2, . . . , 𝑤𝑞𝜔𝑞}  and [𝑤𝑗]𝑗=1
𝑞

 are 

weights computed using equation (5). 

 

3.2 Template Generation 

Random permutation enhances the security and 

privacy of biometric information while maintaining low 

computing complexity [4]. The proposed template 

generation method employs random permutation 

through personalized keys to generate cancelable 

templates. If compromised, changing the personalized 

key can produce a new template; hence, using 

personalized keys to generate the template is 

advantageous. The changed key results in a fresh 

permutation matrix, generating a novel cancelable 

template uncorrelated with the stolen one [31, 32]. The 

non-correlation among different templates of the same 

person using different keys is demonstrated in Section 

5.2.3. 

 

3.2.1 RP-RegSt 

To generate the templates using the first 

proposed method, RP-RegSt, a new total scatter matrix 

from the vectors of 𝑉 = [𝑣11𝑣12…𝑣𝑁(𝑚−1)𝑣𝑁𝑚] is formed 

as: 
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𝑆̂𝑡 = ∑
1

𝑛

𝑁
𝑖=1 ∑ (𝑣𝑖𝑗 − 𝑣‾)

𝑚
𝑗=1 (𝑣𝑖𝑗 − 𝑣‾)

𝑇
  (19) 

where the column vector 𝑣𝑖𝑗 ∈ ℝ
𝑞 in the matrix 

𝑉  represents the transformed cryptic pattern 𝑧𝑖𝑗 , 𝑣‾ =
1

𝑁
𝛴𝑖=1
𝑁 𝑣‾𝑖 represents the mean of all the column vectors of 

𝑉 , and 𝑣‾𝑖 =
1

𝑚
𝛴𝑗=1
𝑚 𝑣𝑖𝑗  represents the mean of 

transformed cryptic patterns of 𝑖𝑡ℎ  class. The 

eigendecomposition is then applied to Ŝ𝑡 to extract the 

eigenvectors 𝛺𝑡 ∈ ℝ
𝑞×𝑞  and eigenvalues 𝛬𝑡 . After 

sorting the eigenvectors of 𝛺𝑡 in decreasing order of the 

associated eigenvalues in 𝛬𝑡 , the dimensionality 

reduction is performed by choosing the first 𝑘 

eigenvectors 𝛺̂𝑡 ∈ ℝ
𝑞×𝑘  where 𝑘 << 𝑞. The regularized 

transformation matrix 𝐹𝑡 ∈ ℝ
𝑞×𝑘  following [25] is 

constructed as follows: 

𝐹𝑡 = Ω
~

𝑤𝛺̂𝑡    (20) 

Finally, the template matrix for all persons is 

generated as follows: 

𝑇𝑡 = 𝐹𝑡
𝑇𝑍    (21) 

where 𝑇𝑡 = [𝑡11, 𝑡12, … , 𝑡𝑁(𝑚−1), 𝑡𝑁𝑚] ∈ ℝ
𝑘×𝑛. The 

column vector 𝑡𝑖𝑗 represents the template corresponding 

to the biometric image 𝑥𝑖𝑗. 

 

3.2.2 RP-RegSb 

The templates using the proposed method RP-

RegSb are generated similarly to RP-RegSt, except that 

we construct a between-class scatter matrix instead of a 

total scatter matrix using transformed matrix 𝑉  as 

follows: 

𝑆̂𝑏 = ∑
1

𝑁

𝑁
𝑖=1 (𝑣‾𝑖 − 𝑣‾)(𝑣‾𝑖 − 𝑣‾)

𝑇   (22) 

The reduced set of weights 𝛺̂𝑏 can be obtained 

after the eigendecomposition of 𝑆̂𝑏  followed by the 

selection of first 𝑘 eigenvectors associated with the first 

𝑘  eigenvalues after sorting in decreasing order of 𝛬𝑏 . 

Similar to equation (20), the regularized transformation 

matrix 𝐹𝑏 ∈ ℝ
𝑞×𝑘 following [25] is constructed as follows: 

𝐹𝑏 = Ω
~

𝑤𝛺̂𝑏   (23) 

The templates for all persons using RP-RegSb 

are generated as follows: 

𝑇𝑏 = 𝐹𝑏
𝑇𝑍    (24) 

These templates are non-invertible as only 𝑘 

features represent all 𝑞  features and 𝑘 <<  𝑞 . In the 

enrollment phase, a personalized key (a positive 

number) is assigned to each person (the person can also 

choose a key), determining the corresponding random 

permutation matrix. This random permutation matrix is 

used to transform the biometric images into cryptic 

patterns. The cryptic patterns are then converted into 

cancelable templates. These templates are stored in the 

database. In the authentication phase, the query image 

presented to the system (with key) is converted into the 

cancelable template using the same method, which will 

then be matched with the stored templates. The person 

must enter the correct key because a wrong key with the 

correct biometrics will result in a mismatch. If the 

template is matched, access to the system is granted. 

Otherwise, it is rejected. If the template of any person is 

stolen, then new templates can be issued by changing 

the personalized key. The personalized keys are stored 

in the database using some encryption techniques. 

 

3.3 Improved Classification Accuracy using 

Random Permutation 

Let 𝑇:ℝ𝑞 → ℝ𝑞 be a linear transformation. Now, 

the linear transformation 𝑇 is defined as: 

𝑧𝑖𝑗 = 𝑇(𝑥) = 𝑃𝑖𝑥𝑖𝑗   (25) 

where 𝑃𝑖 is the random permutation matrix, 𝑥𝑖𝑗 ∈

ℝ𝑞  is the column vector representing the biometric 

image, and 𝑇(𝑥) ∈ ℝ𝑞 is the transformed column vector 

which is the randomly permuted 𝑥𝑖𝑗 . We can consider 

each column vector 𝑥𝑖𝑗  as a point in 𝑞 −dimensional 

space. Therefore, this linear transformation transforms 

𝑥𝑖𝑗 ∈ ℝ
𝑞 to 𝑧𝑖𝑗 ∈ ℝ

𝑞. This transformation can be seen as 

a projection of 𝑥𝑖𝑗  onto a different subspace. It is also 

given in the literature that samples from a specific object 

class are known to lie in the same linear subspace. 

Applying a class-specific permutation to the samples 

(biometric images) of different classes forms a distinct 

linear subspace for each individual. The distance 

between two linear subspaces increases, therefore 

enhancing the classification accuracy. The results of the 

experiments that prove the claim are shown in 

Subsection 5.1.2. 

 

4 Experimental Setup and Biometric 

Databases 

The proposed method is exhaustively tested on 

six publicly available biometric image databases. The list 

contains two face databases (Georgia Tech [33] and 

AT&T [34]), three iris (UBIRIS.v1 [35], CASIA-IrisV1 [36], 

IITD Iris [37]), and one ear database (IITD Ear [38]). 

Images with varying lighting conditions, positions, and 

other information can be found in biometric image 

databases. Each image is used without any pre-

processing, except the Georgia Tech face database, 

where the color images were converted to grayscale 

before applying the proposed method. Each experiment 

is conducted on an HP Z2 Tower G5 workstation in 

Windows 11 and Python version 3.9.7. The biometric 

images of each person in the database are shuffled first 

before splitting into training and test sets. To avoid any 

randomness in the results, the seed given for shuffling 

the images of each person is three.  
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The images were resized and downsampled 

using the resize function of the OpenCV package. The 

random permutation matrices are generated by giving 

the user labels as seeds. User labels were integers 

beginning with zero and had to be entered in a sequence 

of images appearing in the database. Table 1 shows the 

details of the biometric databases used for the 

experiments.  

Table 1 displays the original resolution, the 

resolution used for experiments, the number of persons, 

and the images per person for each database. AT&T [34] 

(formerly known as “The ORL Database of Faces”) 

images have 256 grayscale levels and were initially 

stored in the original database in PGM file format but 

converted to JPG format before applying the methods. 

In Georgia, Tech [33], the frontal and angled faces are 

depicted with various scales, positions, and facial 

expressions. The color face images were converted to 

grayscale before using the template-generating 

techniques.  

There are 1877 images in the UBIRIS.v1 Iris 

database [35] taken from 241 individuals at two separate 

sessions. Many noise elements were present in the 

collected images, which can be used to assess the 

robustness of the methods. The database initially had 

images of 241 and 132 people in the first and second 

sessions. 127 persons’ iris images present in both 

sessions were used in the research; each person had 

ten or eleven images. Before experimenting, the 

eleventh image was removed for uniformity. In the 

CASIA-IrisV1 database [36], three images were 

captured in the first session, while four in the second. 

Before experimenting, images from both sessions were 

combined and converted to JPG format from BMP. The 

left eye images of 176 boys and 48 females between the 

ages of 14 and 55 can be found in the IITD Iris database 

[37]. Images were taken in a non-touching indoor setting 

for the IITD Ear [38]. Before starting the experiment, the 

pictures of CASIA-IrisV1, IITD Iris, and IITD Ear were 

converted from the original bitmap file format (BMP) into 

JPG.  

 

5. Results Analysis 

The templates were generated using the 

suggested procedures and underwent thorough 

performance and security analysis. The performance 

analysis discusses the suggested methods’ recognition 

performance (given in Subsection 5.1), whereas the 

security analysis analyses the generated templates’ 

quality and security (given in Subsection 5.2). 

 

5.1 Performance Analysis 

The classification accuracy is used to assess 

and compare our proposed methods with other 

competing methods. The number of training images, 

image size, and other variables affect the classification 

accuracy [22]. The systems with high classification 

accuracy are considered better than others. The 

classification accuracy (CA) (in percentage) can be 

calculated as: 

𝐶𝐴 =
𝑡

𝑛
× 100     (26) 

where 𝑡  is the number of templates correctly 

classified, and 𝑛 is the total number of templates in the 

test set. We used the K-nearest neighbors (KNN) 

technique for template classification, specifically with 

one neighbor for all competing and proposed methods. 

The k-nearest neighbor algorithm from the inbuilt 

package sklearn of Python is used. Cross-validation is 

employed to mitigate the influence of random variability 

on the test results. In Subsection 5.1.1, we assessed the 

effectiveness of the suggested procedures compared to 

alternative methods based on random permutations. 

The next subsection (5.1.2) examines the effect of 

applying random permutation on classification accuracy. 

 

5.1.1 Classification Accuracy Comparision 

The classification accuracy of the proposed 

method is compared with RP-PCA [3], RPLDA [21], and 

RP-LPP [22] approaches. These approaches have been 

developed to generate cancelable biometric templates 

using random permutations.  

Table 1. Details of biometric image databases 

Database Original Dimension* Dimension* Used No. of Persons Images per Persons 

AT&T Face 92 × 112 92 × 112 40 10 

Georgia Tech Face 640 × 480 100 × 75 50 15 

UBIRIS-IrisV1 200 × 150 100 × 75 127 10 

CASIA-V1 Iris 320 × 280 100 × 75 108 7 

IITD Iris 320 × 240 100 × 75 224 10 

IITD Ear 50 × 180 50 × 180 221 3 

*width×height 
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Table 2. Comparison of Classification Accuracy 

Database ↓ 

# of Features → 

RP-RegSt RP-RegSb RP-PCA RPLDA RP-LPP 

10 20 10 20 10 20 10 20 10 20 

AT&T Face 95.56 98.56 95.56 98.5 80.12 92.81 35.25 42.56 79.38 93.62 

Georgia Tech Face 93.7 94.1 93.73 94.23 93.63 93.9 75.53 82.23 93.27 93.9 

UBIRIS.v1 Iris 96.16 97.97 96.38 98.15 83.13 91.81 61.44 77.74 87.13 93.25 

IITD Iris 94.13 98.39 94.27 98.36 87.82 95.79 22.54 42.38 92.06 97.19 

Casia-IrisV1 95.37 98.21 95.62 98.33 84.32 93.95 43.21 63.09 88.09 95.25 

IITD Ear 94.87 98.49 93.97 98.04 46.76 65.46 55.66 71.49 55.2 75.72 

-*classification accuracies are given in percentage (%). 

 

Based on our literature knowledge the above-

mentioned methods have been chosen for comparison 

as they are the most recent and high-performing random 

permutation-based strategies on the AT&T, UBIRIS, and 

IITD Ear datasets for cancelable template generation. In 

RP-PCA and RP-LPP, the dimensionality is reduced 

using principal component analysis (PCA) and locality-

preserving projection (LPP). The resulting reduced 

feature dimensions are referred to as components. 

However, in RPLDA, the dimension is reduced using 

linear discriminant analysis (LDA), and the features are 

referred to as discriminants. In the proposed method, the 

reduced features are also called discriminates. We use 

the term features to compare all methods. Biometric 

modality-wise comparison of recognition accuracy is 

discussed in the following subsections. The 

classification accuracy of RP-RegSt and RP-RegSb with 

other competing methods is given in Table 2. 

 

5.1.1.1 Face 

Two face databases are used to evaluate the 

performance of the proposed methods. Figure. 1 shows 

the classification accuracy comparison on AT&T face 

[34] and Georgia Tech face [33]. 

AT&T Face: Out of ten images, we trained the 

models of all competing approaches using two template 

images and assessed their performance using eight 

images of faces. The comparison of the classification 

accuracy of the proposed methods with other competing 

methods on AT&T  

Face images is shown in Figure. 1a. It is visible 

that the performance of both the RP-RegSt and Rp-

RegSb surpasses the performance of other methods. 

Both proposed methods, RP-RegSt and Rp-RegSb, 

achieve a significant classification accuracy of 95.56% 

for only ten features. And for 20 features, RP-RegSt 

achieves 98.56%, and Rp-RegSb achieves 98.5%. 

Acknowledging that RP-LPP and RP-PCA achieve 

comparable performance parity with RP-RegSt and Rp-

RegSb, specifically when the feature count approaches 

20.  

Georgia Tech (GT) Face: The comparison of the 

classification accuracy on the GT face database is 

shown in Figure. 1b. This database contains 15 face 

images per person. We used three template images to 

train all the models for this database, and 12 biometric 

images were used to test the model’s performance. The 

performance of all the competing methods except 

RPLDA is comparable with RP-RegSt and RP-RegSb on 

the GT face images, especially for more than ten 

features. For only ten features, the classification 

accuracy achieved by RP-RegSt is 93.7%, and RP-

RegSb is 93.73%. The classification accuracy of RP-

RegSt and RP- RegSb on 20 features is 94.1% and 

94.23%, respectively.  

 

5.1.1.2 Iris 

For the iris biometric modality, two template 

images train the models of all competing methods. It is 

important to note that the proposed methods achieve 

more than 90% of classification accuracy for 10 features 

on all three iris databases. 

UBIRIS.v1 Iris: The classification accuracy of all 

the methods on UBIRIS iris images is plotted against the 

number of features in Figure. 2a. Eight iris images out of 

ten are used to evaluate the models of all competing 

methods. The suggested techniques show a substantial 

difference in classification accuracy compared to all 

other competing methods. The classification accuracy of 

RP-RegSt and RP-RegSb for ten features is 96.16% and 

96.38%, respectively. The RP-PCA, RP-LPP, and 

RPLDA could achieve only 83.13%, 87.13%, and 

61.44%, respectively. For 20 features, the recognition 

accuracy obtained by RP-RegSt is 97.97%, and RP-

RegSb is 98.15%. 

IITD Iris: Figure. 2b compares the performance 

of all five methods on the IITD Iris database. 
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Figure 1. Classification Accuracy Comparison (a) AT&T Face and (b) Georgia Tech Face 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Classification Accuracy Comparison a) UBIRIS.v1, b) IITD Iris, c) CASIA-IrisV1 

Out of 10, eight images were used in the testing 

phase, similar to UBIRIS.v1. The performance of RP-

RegSt and RP-RegSb are almost similar, irrespective of 

the number of features. The performance of RP-LPP is 

comparable to that of the proposed methods, whereas 

RP-PCA performed a little lower. RPLDA couldn’t 

perform well on the IITD Iris database images. RP-RegSt 

achieved 94.13% classification accuracy with ten 

features, and RP-RegSb achieved 94.27%. For 20 

features, RP-RegSt and RP-RegSb achieved 98.39% 

and 98.36%, respectively. 

Casia-IrisV1: The comparison of the 

performance of RP-RegSb and RP-RegSt with other 

(a) (b) 

(c) 
(a) (b) 

(c) 
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methods on Casia-IrisV1 iris database is given in Figure. 

2c. For this database, the test set comprises five images 

out of seven per individual. It can be easily observed that 

the classification accuracy obtained by RP-RegSt and 

RP-RegSb is better than that of other methods. For ten 

features only, RP-RegSt and RP-RegSb achieve an 

accuracy of 95.37% and 95.62%, respectively. For 20 

features, the RP-RegSt method achieves 98.21% 

classification accuracy, while RP-RegSb achieves 

98.33%. 

 

5.1.1.3 Ear 

For IITD Ear database, two images out of three 

are used to train all the models, and one is used for 

testing. Figure. 3 shows the performance comparison of 

all comparing methods on the ear database. It is crucial 

to note that none of the other approaches could provide 

results comparable to those of the proposed methods. 

The classification accuracy of RP-RegSt and RP-RegSb 

on ten features are 94.87% and 93.97%, respectively; 

for 20 features, it is 98.49% and 98.04%.  

Figure 3. Classification Accuracy Comparison IITD Ear 

 

5.1.2 Impact of Random Permutation on 

Recognition Accuracy  

The experiments are conducted on all six 

biometric databases to check the effect of applying 

random permutation on the classification of biometric 

images. Table 3 shows the classification accuracy at ten 

features only. Every biometric dataset’s training and test 

sizes are similar to those in Section 5.1.1. In row 1 and 

row 3, the results of classification using Regularized 

Total-Scatter (ERESt) and Regularized between Scatter 

(ERESb) are shown, whereas in row 2 and row 4, the 

results of classification using Random Permutation with 

Regularized Total-Scatter (RP-RegSt) and Random 

Permutation with Regularized Between-Scatter (RP-

RegSb) are displayed. 

The data presented in Table 3 demonstrates 

that using random permutations with eigenfeature 

regularisation has a notable positive impact on the 

classification accuracy of each biometric database. Out 

of both proposed methods, the RP-RegSb approach 

demonstrated the minimum increase in classification 

accuracy of 3.43%, increasing the accuracy on the GT 

face database from 90.3% to 93.73%. The RP-RegSt 

approach demonstrated a maximum increase in 

classification accuracy of 32.9% on Casia-IrisV1, 

increasing the accuracy from 62.47% to 95.37%. The 

RP-RegSb algorithm shows an average increase in 

classification accuracy of 17.11% across all biometric 

datasets, while the RP-RegSt algorithm demonstrates a 

19.49% average increase. This improvement can be 

considered noteworthy. Therefore, it is proved that 

classification accuracy improves when random 

permutation is applied. 

 

5.2 Privacy and Security Analysis 

This subsection provides a detailed privacy and 

security analysis of the templates generated using 

proposed methods. We demonstrate that the templates 

fulfil the other three fundamental characteristics of 

cancelable biometrics: non-invertibility (security), 

diversity, and revocability, in addition to performance. 

Figure 4. contains three images for each database, 

where the first image represents an original biometric 

image of a random person, and the second and the third 

images are their corresponding templates generated by 

the proposed methods RP-RegSt and the RP-RegSb, 

respectively. It is visible from the template images that 

they are dissimilar to the original image and reveal no 

visual information about the original biometric data. The 

security of the templates is demonstrated through brute 

force attack analysis. 

 

5.2.1 Non-Invertibility Analysis  

The concern of privacy analysis is directly 

related to the invertibility of the transformed template. 

Non-invertibility, or irreversibility, refers to the inability to 

retrieve the original biometric information from the 

generated template. There may be two scenarios using 

which an adversary wants to perform this retrieval. In the 

first scenario, the adversary only has access to the 

template without the key. In contrast, in the second 

scenario, the adversary can access both the template 

and the key. In the first scenario, recovering biometric 

information from the template without the key requires 

two steps: a) transform the template into the cryptic 

pattern and b) transform the cryptic pattern into original 

biometric information. In the second scenario, the 

adversary only needs to convert the template into its 

corresponding cryptic pattern because the original 

biometric image can be directly generated from the 

cryptic pattern using the key by taking the inverse of the 

random permutation matrix. 

Let us first discuss the latter scenario, where the 

adversary has the key and the template.  



Vol 7 Iss 1 Year 2025 Onkar Singh et.al, /2025 

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 17-32 | 27 

Table 3. Effect of Random Permutation on Classification Accuracy* at Ten Features 

Row No. Method ORL GT UBIRIS IITD Iris Casia IITD Ear 

1 ERESt 81.62 89.33 78.54 65.79 62.47 75.11 

2 RP-RegSt 95.56 93.7 96.16 94.13 95.37 94.87 

3 ERESb 82.12 90.3 79.96 69.2 63.83 81.45 

4 RP-RegSb 95.56 93.73 96.38 94.27 95.62 93.97 

*Classification accuracies are given in percentage (%). 

 

Figure 4. Sample Image, RP-RegSb Template, and RP-RegSt Template from six Databases 

The templates are visibly secure, as seen in 

Figure 4. There is no similarity between the original 

biometric images and their corresponding templates. 

However, statistical experiments are essential to 

determine the level of the relationship or similarity 

between the created templates and the corresponding 

biometric image. Some metrics used in cancelable 

biometrics to check the similarity between two images 

are as follows [39, 40]. 

 Correlation coefficient (𝐶𝑟): gives 0 if both the 

images are not related to each other, and the 

values 1 or -1 represent the positive or negative 

correlation, respectively, 

 Mean Squared Error (𝑀𝑆𝐸): an optimal value for 

a cancelable template should differ significantly 

from zero because the zero value represents a 

similar image, 

 Structure SIMilarity ( 𝑆𝑆𝐼𝑀 ): value ranges 

between −1 and 1, where -1 and 1 represent 

different and same images, respectively. A 

value of 0 indicates no similarity. 

 Number of Pixel Change Rate ( 𝑁𝑃𝐶𝑅 ): 

calculates the pixel percentage that differs in 

two images. 

 Unified Average Changing Intensity ( 𝑈𝐴𝐶𝐼 ): 

provide the average difference in intensity 

between plain and encrypted images [41]. 

Table 4 describes the correlation and similarity 

metrics’ formulas to assess the generated templates’ 

quality. These metrics are used to compute the 

relationship between cryptic patterns and template 

images, and the results are given in Table 5. 

The mean correlation values between the cryptic 

patterns and the templates approach zero, which implies 

a lack of correlation between the cryptic patterns and 

template images. Hence, it can be argued that the 

generated templates have no direct relationship with 

their cryptic patterns. The MSE between the cryptic 

patterns and their generated templates reaches 

thousands, and SSIM approaching zero proves they are 

dissimilar. An image encryption system is immune to 

different imposters attacks if the UACI (Unified Average 

Changing Intensity) is more than 33.4635% and the 

NPCR (Number of Pixel Change Rate) is greater than 

99.6094% [42]. As displayed in Table 5, the outcomes 

for all databases show that the NPCR is 100% and the 

UACI is much higher than 33.4635%. The templates 

generated using RP-RegSt and RP-RegSb proved to 

have no relation with their cryptic patterns, as evidenced 

by the correlation coefficient, MSE, and SSIM. 

Consequently, these templates are secure and deemed 

resistant to impostor attacks, as evidenced by NPCR 
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and UACI. Therefore, the results prove that the cryptic 

patterns are unrelated to their corresponding templates 

and immune to different imposters’ attacks. 

Applying random permutation to the biometric 

data also makes it secure [4]. If only the template 

(without the key) is compromised, then recovering the 

original biometric information from the cryptic pattern 

almost equals guessing the biometric image. In this 

case, for a q-dimensional column vector, 𝑛𝑞  guesses are 

required in the worst case and 𝑛𝑞/2 in the average case. 

In our case, the 𝑛 is 256, therefore (28)9000 guesses are 

required in the worst case and (28)9000/2 in the average 

case. In both cases, the complexity is 𝑂(28)9000, which 

is very high. Therefore, converting cryptic patterns to the 

original biometric images is computationally impossible 

without the key, and hence, guessing a random array of 

such high dimensions is difficult. 

It has been proved that the generated template 

is safe from imposters’ attacks and that the cryptic 

pattern cannot be recovered. Applying random 

permutation through personalized keys adds a layer of 

security to the template. Therefore, the generated 

templates are non-invertible in both scenarios, and the 

proposed method satisfies this characteristic of 

cancelable biometrics. 

 

5.2.2 Brute Force Attack Analysis 

In a brute force attack, the adversary tries all 

possible combinations to generate the transformed 

template [43]. If the adversary knows the transform 

function, he/she must have the cryptic pattern to 

transform it into the template. Since, the cryptic patterns 

are constructed by applying random permutation on the 

column vector representing the original biometric image, 

the 𝑞! iterations are required to create a 𝑞-dimensional 

cryptic pattern in the absence of the user-specific key, 

where 𝑞 = 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 . According to Table 1 a 

minimum of 9000! iterations are necessary to produce 

the cryptic pattern, making the computational task 

exceedingly challenging. Even the fastest 

supercomputer with a speed of 1017  floating point 

operations per second (FLOPS) would take thousands 

of centuries to create the cryptic pattern. Therefore, the 

templates are secured from brute force attacks. 

 

5.2.3 Diversity and Revocability Analysis 

The diversity criterion in cancelable biometrics 

requires that the templates representing the same 

biometrics should not be associated with one another 

across different applications. The lack of correlation 

between the randomly generated keys guarantees that 

the templates created using various keys are not 

correlated [8].  

This enables using distinct keys for multiple 

applications or systems. Therefore, in the proposed 

methods, different templates can be generated using 

separate keys for the various applications for the same 

person. Hence, the requirement of diversity is met. 

For revocability requirements, another template 

may be quickly generated by simply changing the key if 

the template or the key is compromised. The changed 

key produces a new permutation matrix, which, as a 

result, generates a new cancelable template that would 

be uncorrelated with the stolen one [31]. This process 

creates new templates for specific users without 

affecting the templates of other users. It demonstrates 

the accomplishment of the crucial revocability/ 

renewability characteristic. 

 

Table 4. Correlation and Similarity Metrics 

Formula Description 

𝐶𝑟(𝐵, 𝑇) =
∑ ∑  𝑗𝑖

(𝐵𝑖𝑗 − 𝐵)(𝑇𝑖𝑗 − 𝑇)

√(∑  𝑖 ∑  𝑗 (𝐵𝑖𝑗 − 𝐵)
2
) (∑  𝑖 ∑  𝑗 (𝑇𝑖𝑗 − 𝑇)

2
)

 
𝐵𝑖𝑗  and 𝑇𝑖𝑗  are the biometric and template 

images, respectively. 𝐵 and 𝑇 the mean of B 

or T. 

𝑀𝑆𝐸 =
1

𝑊 × 𝐻
∑ 

𝑊

𝑖=1

∑ 

𝐻

𝑗=1

(𝐵(𝑖, 𝑗) − 𝑇(𝑖, 𝑗))2 
W and H are the number of pixels in width 

and height, respectively 

𝑆𝑆𝐼𝑀(𝐵, 𝑇) =
(2𝜇𝐵𝜇𝑇 + 𝐶1)(2𝜎𝐵𝑇 + 𝐶2)

(𝜇𝐵
2 + 𝜇𝑇

2 + 𝐶1)(𝜎𝐵
2 + 𝜎𝑇

2 + 𝐶2)
 

𝜇𝑖 is the mean, 𝜎𝑖 is the variance, 𝜎𝐵𝑇 is the 

covariance of B & T, and 𝐶𝑖 is the constant 

𝑁𝑃𝐶𝑅 =
∑ 𝐷(𝑖, 𝑗)

𝑖,𝑗

𝑊 ×𝐻
× 100 

𝐷(𝑖, 𝑗)  =  1  if the corresponding pixels of 

two images are different and 0 otherwise 

𝑈𝐴𝐶𝐼 =
1

𝑊 × 𝐻
× (

∑ 𝐵(𝑖, 𝑗) − 𝑇(𝑖, 𝑗)
𝑖,𝑗

255
) × 100 

255 is the maximum intensity value of a pixel 

in the grayscale image 
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Table 5. Correlation and Similarity Analysis 

Database Method Correlation MSE SSIM NPCR UACI 

AT&T Face 
Template-St 

Template-Sb 

0.0086 

0.0051 

29989.11 

30063.32 

0.0026 

0.0031 

100 

100 

56.96 

56.93 

Georgia Tech Face 
Template-St 

Template-Sb 

0.0139 

0.0042 

15285.88 

15284.37 

0.0021 

-0.0027 

100 

100 

39.16 

39.02 

UBIRIS.v1 Iris 
Template-St 

Template-Sb 

-0.0154 

-0.0163 

51322.67 

53325.47 

-0.0014 

-0.0026 

100 

100 

76 

77.49 

Casia-IrisV1 
Template-St 

Template-Sb 

0.0048 

0.0115 

45818.11 

40145.32 

0.005 

0.0063 

100 

100 

71.59 

65.62 

IITD Iris 
Template-St 

Template-Sb 

0.0021 

0.0115 

40535.21 

40145.32 

0.0029 

0.0063 

100 

100 

66.35 

65.62 

IITD Ear 
Template-St 

Template-Sb 

0.0018 

-0.0022 

19332.69 

20073.65 

0.0034 

0.0023 

100 

100 

46.64 

47.31 

 

6 Conclusion and Future Work 

This research proposes two cancelable 

biometric generation methods (RP-RegSt & RP-RegSb) 

for authentication. The templates are generated by 

applying random permutation with eigenfeature 

regularization and feature extraction (ERE). The 

personalized key seeds a random permutation matrix 

that converts the biometric image into a cryptic pattern. 

The eigenfeatures of the cryptic pattern are regularized 

using ERE. These regularized eigenfeatures transform 

the cryptic pattern into a cancelable template using a 

between-class or total scatter matrix. We exploit the 

discriminative and stable low-dimensional feature 

representation advantage of eigenfeature regularization 

and feature extraction (ERE) to enhance recognition 

accuracy and save storage space. Since the training 

phase generates the transformation matrix, the 

regularization process takes a little longer than PCA and 

LDA, but this is acceptable and does not affect the 

testing time. Privacy concerns are effectively addressed 

as the templates are irreversible and secure from 

imposters’ attacks. If a user’s template, key, or both are 

compromised, then new templates are generated by 

quickly changing the personalized key, like passwords. 

The proposed approaches satisfy the diversity 

(unlinkability) property, allowing us to use them for 

different applications for the same persons. The brute 

force analysis shows that the security concern is also 

resolved. Both approaches adhere to the key properties 

of cancelable biometrics, making it a promising 

approach for secure biometric authentication. This study 

also indicates that the recognition performance of the 

cancelable template generation algorithms improves by 

applying random permutations. The suggested 

approaches outperformed other state-of-the-art random 

permutation-based cancelable template generation 

methods on six biometric datasets. 

This study might be extended to develop 

cancelable biometric templates for other biometrics 

beyond face, iris, and ear biometric images. Future 

research might focus on multi-modal biometrics, which 

uses more than one biometric modality for 

authentication. 
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