

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 71

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

D
O

I:
 1

0
.5

4
3

9
2

/
ir

jm
t2

5
1

5

Design of an efficient Malware Prediction Model using Auto

Encoded & Attention-based Recurrent Graph Relationship Analysis

Mahesh T. Dhande a, *, Sanjaykumar Tiwari a, Nikhil Rathod b

a Department of Computer Science & Engineering, Monad University, Hapur U.P -245301, India
b Department of Mechanical Engineering, Monad University, Hapur U.P - 245301, India

* Corresponding Author Email: maheshdhande88@gmail.com
DOI: https://doi.org/10.54392/irjmt2515

Received: 21-02-2024; Revised: 09-01-2025; Accepted: 16-01-2025; Published: 22-01-2025

Abstract: The threat of modern malware in the world of cyber security has grown and how the need for proper

detection and analysis techniques has grown with it. All these conventional approaches are insufficient methods if

used to detect new or emerging strains of malware. For this need, the present research develops a novel Malware

Prediction Model using Auto Encoders and Attention Mechanisms to advance Malware Pattern Analysis. This new

approach goes beyond the conventional wisdom because it decodes complex patterns of malware into identifiable

Malware Classes utilizing the unique Recurrent Graph Relationship Analysis. Recurrent Networks perform the

complex task of Feature Analysis and simultaneously. Classical approaches mainly conceive pattern matching where

signatures are taken and used to look in the system hence cannot detect polymorphic or metamorphic types of

viruses. Additionally, these systems have high levels of false positives and poor ability to learn from new types of

threats. On the other hand, the coupling of Auto Encoders with Attention Mechanisms in the model under

consideration allows the model to gain better insights of malware behavior. Such an integration not only improves

the identification of multiform patterns but also changes the approach to growing threats more effectively. The use of

this model was benchmarked against two databases: The Malware Memory Analysis and The Kharon Malware

Database Samples. Strikingly, the proposed model provided 8.3% more precision, 8.5% more accuracy, 5.9% higher

recall, 6.5% better AUC, higher specificity by 9.4%, while slight reduction in delay by 2.9% to other methods.

Keywords: Malware Prediction, Auto Encoders, Attention Mechanisms, Recurrent Graph Analysis, Cyber security,

Scenarios

1. Introduction

Conforming to the relentless pace of digital

technology evolution, cyber threats and the

corresponding malware have also escalated. Malicious

malware has become sophisticated and ever more

challenging to cybersecurity. Traditional malware

detection system is usually signature based or heuristic

and they struggle to keep up with the hype and

diversification of malware [1]. This inadequacy spurred a

need of more advance and dynamic techniques for

malware detection and analysis.

With an advance in machine learning and

artificial intelligence, new frontiers of cyber security have

been opened that promise solutions to these challenges.

Nevertheless, these technologies' application to

malware detection has been hampered by its own set of

limitations [2]. Issues are common such as generally

high false positive rates, the inability to find zero-day

attacks, and lack of flexibility to new and developing

malware strains. Additionally, the malware obfuscation

makes it dynamic and prevents detection of malware,

which requires a model that not only edges known

malware patterns but also predicts the unknown variant

[3, 4].

This approach normalizes variable size API call

sequences into a fixed size representation where little

information is lost [5]. To improve identification of

malware with Bidirectional Long Short Termin (BiLSTM)

a sliding window technique data preprocessing method

is focused on. The goal of the system is to improve both

response accuracy and response efficiency to evolving

malware threats [6].

To overcome those challenges, this paper

presents an innovative Malware Prediction Model which

combines Auto Encoders and Attention Mechanisms, a

new concept in malicious code study. This fusion of

these technologies enhances our ability to identify the

deeper and more nuanced attributes of malware

patterns. By incorporating Auto Encoders into distilling

complex malware signatures into more manageable

representations, the Attention Mechanisms enable the

mailto:maheshdhande88@gmail.com
https://doi.org/10.54392/irjmt2515
https://crossmark.crossref.org/dialog/?doi=10.54392/irjmt2515&domain=pdf&date_stamp=2025-01-22

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 72

model to pay attention on salient features of malware

data and thus improving detection accuracy.

Recurrent Graph Relationship Analysis is the

core of this model. From Recurrent Neural Networks

(RNNs) and Graph Networks hybrid, a novel approach is

presented. RNNs excel at feature analysis for sequential

data that is just the thing that malware patterns are [7].

As such, we use the Graph Networks as the classifiers

that leverage relational information from the data for a

more holistic interpretation of the malware ecosystems.

The proposed model is not based on theory, but

has been solidly tested against existing databases such

as Malware Memory Analysis and Kharon Malware

database. As for results they are promising with that

showing improvement in several key performance

metrics compared to existing models. This is not only an

advancement in malware detection capability but also

sets the groundwork for future research in this critical

role of the cyber security scenarios. We then review

existing models and describe how to design the

proposed model. Results are discussed in section 4 and

a conclusion in section 5.

1.1 Motivation & Contributions

Cyber threat sophistication on the rise: Urgent

need for more advanced detection systems. The crux of

the motivation for this research lies in this necessity.

Therefore, the crux leading to this research is its

necessity. The landscape of rapidly evolving cyber

threats is making traditional malware detection methods

more and more ineffective. However, these

conventional, mostly signature-based approaches are

unable to cope with a new or previously unknown

targets, namely zero-day attacks. Such limitations call

for a paradigm shift in malware detectors so that they not

only overcome current inadequacies, but able to handle

future threats.

To address this critical need, the current

research presents a groundbreaking Malware Prediction

Model, which departs from conventional models. The

motivation for the conception of the model is the

hypothesis that integrating Auto Encoders with Attention

Mechanisms will make the analysis and prediction of

malware patterns a more powerful exercise. This

integration hopes to address currently existent problems

of malware detection with high false positives and

inability to adapt to new malware types.

This research makes several important

contributions. It is first, to apply Auto Encoders in tandem

with Attention Mechanisms in the malware analysis

domain, a novel use case in the field. This integration

reduces the high false positives that plague most

existing systems, and provides for a more nuanced and

precise analysis of malware data. Secondly, malware

classification with Recurrent Graph Relationship

Analysis is a new perspective. The model uses

Recurrent Neural Networks for feature analysis and

Graph Networks [8] as a classifier to further appreciate

the patterns and relationship of malware.

Additionally, the research also adds to the field

with empirical validation. We rigorously tested the model

against the Malware Memory Analysis dataset and the

Kharon Malware Database, achieving higher

performance than existing method across multiple

important metrics, including precision, accuracy, recall,

AUC, specificity, and response time. The results

presented here not only validate the model proposed but

also show the model's potential as a robust framework

to fight against evolving cyber threats.

2. Deep Dive into Malware Detection Models

Malware detection and analysis literature review

show continuous progress and challenges in this area of

rapidly evolving field. The combination of each study

provides unique insights and methods for

understanding, and ultimately dealing with, the malware

threat.

Representative image patterns were explored

by Benchadi et al. [9] for efficient malware analysis via

subspace-based methods. It made use of image

processing and pattern recognition to show that visual

analysis methods may be employed in malware

analysis. This work is in line with the recent trend to use

non-traditional data representation techniques for

malware detection. In Edge/Fog computing

environments, Gulatas et al. [10] concentrated on the

malware threat, especially from the viewpoint of Internet

of Things (IoT) devices. Their work highlights how cyber

threats are evolving their landscape and models that can

accommodate different computing environments in IoT

are needed. In the dynamic analysis space, Abdelwahed

et al. [3] have proposed MalpMiner, a malware miner for

detecting malware activities. They focused on malwares

analysis through which behavioral analysis plays an

essential role and their method comes on the importance

of behavioral analysis to understand and to identify

malwares which is one of the aspects of our proposed

model in this paper. Zhong et al. [1] demonstrated a

novel approach of malware classification by converting

the malware byte codes into images, called Malware-on-

the-Brain. This innovative visualization of malware

mentioned in this study resonates with the visual

analysis method on which this study was based upon. In

Jin et al. [11], the efficacy of perturbations to generate

evasive malware variants was investigated. This work

reinforces the need for adaptable and dynamic models

by reaffirming the difficulties of detecting metamorphic

malware that is continually evolving to evade detection

systems.

Static multi-feature-based malware detection in

smart IoT environments was studied by Jeon et al. [12].

The incorporation of spatial pyramid pooling networks in

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 73

their study is in agreement with the use of sophisticated

methods of feature extraction under scrutiny by the

proposed model of this research. In a comprehensive

survey on IoT malware analysis using federated

learning, Venkatasubramanian et al. [13] were trained.

The work focused on IoT and federated learning

highlights the future direction of the current research—

decentralized learning approaches in malware detection.

The state of the art in safeguarding Android devices from

malware attacks has been provided by Bayazit et al. [14].

The themes of modern learning models with associated

challenges with Android systems complement the

broader theme of evolving malware detection strategies.

The proposed model of this research aligns with the

attention mechanisms used in the proposed API locating

method for malware techniques of Wong et.al [15]. In

addition, their findings further validate the use of

attention based methodologies in malware analysis. As

discussed by [16] Uysal et al, the 6G network must have

a continuous learning capability in order to detect

malware. The development of future proof malware

detection models requires this perspective.

Ali et al. [17] utilize behavioral traffic analysis to

explore multitask deep learning for malware detection in

IoT. Deep learning and behavioral analysis methodology

used by the authors of the current research is further

supplemented by the use of deep learning and

behavioral analysis in their study as well. Multimodal

fusion and weight self-learning were developed by Li et

al. [18] to address the challenge of imbalanced malware

family classification. Transforming the treatment of

imbalanced data sets provides a valuable view on how

to improve classification accuracy in malware detection

models. Akram et al. [7] worked on obfuscated malware

detection using Markov images and convolutional neural

networks (CNN). The focus coincides with the need for

emergent techniques to detect sophisticated malware

variants: their obfuscation and use of CNNs. Ahmed et

al. [19] proposed active learning based defense

approaches to counter adversary evasion attacks on

malwares in IoT. This research complements defensive

measures with an adversarial attack and active learning

strategy focus. Niu et al. [20] presented GCDroid, an

Android malware detection approach through graph

compression and extraction of reachability relationship

for IoT devices. The graph network aspect in the

proposed model also has its parallels in the graph based

methods used in malware detection.

IoT malware detection was explored by Lee et

al. [21] using the combination of opcode category

features with a machine learning approach. One point of

similarity that those approaches share with the feature

extraction process used in the proposed model of this

research is that they emphasised the importance of

opcode analysis in the understanding of the behaviours

of the malware. In [22], Torres et al. have proposed a

malware detection approach by means of feature

engineering and behavior analysis. The importance of

behavioral analysis for malware detection is resonated

by this study, which underscores the importance of

understanding malware activity patterns, which are

prevalent in current research. In 2018, Kural et al. [5]

offered an audio based malware family detection

framework called Apk2Audio4AndMal. Their novel

modality of data representation — converting APK files

to audio for analysis — serves as a proof of concept for

the usage of alternative data representations in malware

classification. An Android malware detection system

based on enhanced API order is developed by Huang et

al. [23] namedEAODroid. This establishes the structural

aspects related to malware and provides the insights into

malware detection of the API order in Android malware

detection. In black box models of online malware

detection, Manthena et al. [24] highlighted the need for

explainable AI. The research of their work on

interpretability in malware detection models is critical for

the fostering defense of transparent and trustworthy AI.

In the context of IoT environment, Kasarapu et

al. [25] develop a resource- and workload-aware

malware detection model, pointing out the requirement

of efficient and scalable solutions in resource

constrained environments such as IoT. Hai et al. [26]

proposed a new image based malware detection to help

detect and respond to new malicious endpoint. The work

on visualizing malware complements image processing

appearing in the proposed model of this research,

generally relating to malware analysis. Recently,

Almarshad et al. [27] studied Android malware detection

by employing machine learning and Siamese Shot

Learning. Through applying one shot learning to

malware detection we introduce a novel way of handling

limited data situations. I applied the scalable algorithm

developed by He et al. [28] to clustering of IoT malware

phylogenetic trees. The results presented in their

approach to malware clustering shed light on the

relations and development of malware families. He et al.

[29] proposed MsDroid, which is a graph neares

networks based approach to identify malicious snippets

for Android malware detection. The graph based

analysis within the proposed model makes use of graph

neural networks in this study.

In Costa and Moia introduced a lightweight,

multi stage Android malware detection approach with

non invasive machine learning technics [30]. Real time

malware detection systems require their lightweight and

efficient models. Through deep neural networks and

multiview features, Qiu et al. [31] propose Cyber Code

Intelligence for Android malware detection. The results

of this research point to the need for multiview analysis

to unlock the codes behind complex malware patterns.

In their work [8], Chen et al proposed a guided malware

sample analysis with graph neural networks. Data graph

based methods such as graph neural networks applied

to malware analysis further validate the effectiveness of

graph based methods for malware analysis.

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 74

Figure 1. Architecture for the Proposed Classification

Process

Alamro, et al. [32] reported on automated

detection of Android malware using an optimal ensemble

learning. Our study shows that ensemble learning

techniques could potentially improve the accuracy of

malware detection. Zhang et al. [33] made the final

attempt to develop a lightweight malware traffic

classification method with a broad learning architecture.

The contribution of their malware traffic classification

approach emphasizes the critical requirement for the

malware detection to be efficient, scalable solutions for

malware detection in the cases of IoT environments. [34,

-37] also show that malwares can also do intrusion in the

network scenarios.

Overall, these studies [4, 2, 38, 39] together

provide a glimpse of the dynamical and multipolar

character of the malware detection research. These offer

insights [6, 40] on the need to develop innovative,

flexible, and panoramic approaches that could counter

the constantly changing cyber environment. The results

and insights presented in these studies provide valuable

guidance for the foundation and development of the

proposed model in this research, based on the

combination of advanced machine learning methods

with behavioral analysis and new data representation

techniques.

As per figure 1, The sequential data processing

uncovers hidden patterns and temporal relationships

crucial to cyber defenders for understanding evolving

behavior of malware. Contributing to this, Graph

Networks present the structural intricacies of malware

data by exploiting their unique ability to perform graph

analysis and classification over a data structure

resembling a graph — where the malware data are

interconnected. They are powerful, non Euclidean data

handling networks, with a deep understanding of the

relational context within the data samples. Auto

Encoders also aid in reducing the dimensionality of the

complex data while meticulously encoding the data into

a lower dimensional, yet informative expression thereby

removing noise levels from the focus of the model and

keeping them on salient features. This is important for

the ability to distill the essence of the malware signatures

and so help more effectively to classify. Unlike the

previous build, the integration of Attention Mechanisms

provides another degree of sophistication, specifically by

actively reallocating the model’s focus to the most

relevant features at any given instance sets. This

mechanism adapts to the changing nature of the

malware threats, and therefore the model stays attentive

to the important information in the data to increase

detection accuracy levels.

2.1 Flowchart

 As per figure 2, the MPERGA model, while being

highly efficient in feature analysis process, uses a very

good variant of fusion that consists of BiLSTM

(Bidirectional Long Short-Term Memory) and GRU

(Gated Recurrent Unit) networks to excavate the hidden

details from the input data samples. This complex job

first involves translating raw data to a form suitable for it

to be processed sequentially. An input sequence is

represented as X{X={x1,x2,...,xn}, where xi is the feature

vector of i–th sample in the i–th sequence set.

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 75

Figure 2. Overall Flow of the Proposed Classification

Process

The BiLSTM is able to capture bidirectional

dependencies because it processes this sequence not

forwards but in both directions. The dual processing

mechanism allows the network to collect contextual

information from both previous and future states, a key

property in understanding how personalizing the

malwares is learned. The forward and backward LSTM

units are defined as follows,

● Forward LSTM, is represented via equations 1, 2, 3,

4 & 5 as follows,

ℎ𝑡𝑓 = 𝑜𝑡𝑓 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡𝑓) (1)

𝑜𝑡𝑓 = 𝜎(𝑊𝑜𝑓 ∗ 𝑥𝑡 + 𝑈𝑜𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑜𝑓) (2)

𝑐𝑡𝑓 = 𝑓𝑡𝑓 ∗ 𝑐𝑓(𝑡 − 1) + 𝑖𝑡𝑓 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑓 ∗ 𝑥𝑡 + 𝑈𝑐𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑐𝑓) (3)

𝑓𝑡𝑓 = 𝜎(𝑊𝑓𝑓 ∗ 𝑥𝑡 + 𝑈𝑓𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑓𝑓) (4)

𝑖𝑡𝑓 = 𝜎(𝑊𝑖𝑓 ∗ 𝑥𝑡 + 𝑈𝑖𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑖𝑓) (5)

● Backward LSTM is represented via equations 6, 7,

8, 9 & 10 as follows,

ℎ𝑡𝑏 = 𝑜𝑡𝑏 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡𝑏) (6)

𝑜𝑡𝑏 = 𝜎(𝑊𝑜𝑏 ∗ 𝑥𝑡 + 𝑈𝑜𝑏 ∗ ℎ𝑏(𝑡 + 1) + 𝑏𝑜𝑏) (7)

𝑐𝑡𝑏 = 𝑓𝑡𝑏 ∗ 𝑐𝑏(𝑡 + 1) + 𝑖𝑡𝑏 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑏 ∗ 𝑥𝑡 + 𝑈𝑐𝑏 ∗ ℎ𝑏(𝑡 + 1)

+ 𝑏𝑐𝑏) (8)

𝑓𝑡𝑏 = 𝜎(𝑊𝑓𝑏 ∗ 𝑥𝑡 + 𝑈𝑓𝑏 ∗ ℎ𝑏(𝑡 + 1) + 𝑏𝑓𝑏) (9)

 𝑖𝑡𝑏 = 𝜎(𝑊𝑖𝑏 ∗ 𝑥𝑡 + 𝑈𝑖𝑏 ∗ ℎ𝑏(𝑡 + 1) + 𝑏𝑖𝑏) (10)

σ may be interpretation as the sigmoid activation

function, htf and htb are the hidden state at time t for

forward and backward LSTMs respectively, and ctf and

ctb are the the cell states, and W, U, and b are the

weights and biases for different gates (input, forget, and

output) depending on which scenario it is. The model

extracts bidirectional features with BiLSTM, and

combines GRU to further refine these features. GRU has

the advantage of being simple and efficient and captures

the dependencies within sequences without having

separate memory cells. A GRU works like this:

Where, σ can be interpretation as the activation

function for sigmoid, htf and htb are the hidden state at

time t for forward and backward LSTMs respectively, htf

and htb are the the cell state, and W, U, and b are the

weights and biases for different gates (input, forget,

output) depending on the scenario. We use BiLSTM to

extract bidirectional features and combine GRU to

further refine these features. GRU is simple and efficient

and it captures the dependencies within sequences

without additional cells of memory. GRU, known for its

efficiency and simplicity, effectively captures the

dependencies in sequences without the need for

separate memory cells. The operations within a GRU

works as follows

● GRU Operations are represented via equations 11,

12, 13 & 14 as follows,

𝑧𝑡 = 𝜎(𝑊𝑧 ∗ 𝑥𝑡 + 𝑈𝑧 ∗ ℎ(𝑡 − 1) + 𝑏𝑧) (11)

𝑟𝑡 = 𝜎(𝑊𝑟 ∗ 𝑥𝑡 + 𝑈𝑟 ∗ ℎ(𝑡 − 1) + 𝑏𝑟) (12)

ℎ~𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ∗ 𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ(𝑡 − 1)) + 𝑏ℎ) (13)

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 76

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ(𝑡 − 1) + 𝑧𝑡 ⊙ ℎ~𝑡 (14)

Each elementwise multiplication, zt ⊙ rt and

each update and reset gates zt and rt respectively. rt is

able to allow the model to reset its state and discard

irrelevant information trained on, meaning that only the

most important information about the data is analyzed.

H = {h1, h2,...,hn}, is the combined output and a rich and

comprehensive features representation from the input

data samples by the output from BiLSTM and GRU. Now

refined, these features are highly representative to the

underlying pattern in the malware data, and constitute

the input for subsequent stages of the proposed model,

while they provide a nuanced and effective approach to

the malware detection process. The combination of

BiLSTM and GRU not only benefits from these previous

components but also fuses them together into a

harmonious, powerful system for deep feature analysis

in cyber security applications.

Thereafter, a Graph Network acts as an

important classifier to transform the feature extracted by

this process to the appropriate malware classes. Each

input to the Graph Network (with BiLSTM and GRU

layers) is processed through features thus extracted, H

= {h1, h2,...,hn}, with hi representing the features (loss)

vector for the ith data point set. The Graph Network is

based on Graph Convolutional Networks (GCNs),

where, rather than on vector operations, the primary

operation is to operate on data modeled as graphs. The

core idea is to upgrade each node (data point) feature

representation by scanning features from its adjacent

nodes in the graph and capture the local structure and

feature of the graphs. For the process of feature

aggregation and update of the GCN, the math

formulated in equation 15.

 𝑎𝑖 = ∑
ℎ𝑗

√𝑑𝑖∗𝑑𝑗𝑗∈𝑁𝑗 (15)

Where, summing over its neighbors N(i) sets, a

i is the aggregated feature for node i. The di is the degree

of node i (number of connections), and dj is the degree

of its neighbor and node j sets. In current scenarios, the

aggregation considers the normalization factor to avoid

the scale of the features to grow very large. The Feature

Update process is also represented in equation 16

similarly.

ℎ𝑖′ = 𝜎(𝑊𝑔𝑎𝑖 + 𝑏𝑔) (16)

Two features (aggregated features), are feeding

into a linear, ReLU activation σ, for different feature sets

and they are updated with the aid of a weight matrix Wg

and a bias bg. For each sample set, the new feature

representation hi′ for node i created. GCN is composed

of multiple layers and each layer performs node feature

updates using output of the previous layers. According

to equation 17, the final updated feature of a node in

these layers is represented.

ℎ𝑖(2) = 𝜎(𝑊𝑔(2)𝜎(𝑊𝑔(1)𝑎𝑖(1) + 𝑏𝑔(1)) + 𝑏𝑔(2)) (17)

Where, Wg(1), bg(1), Wg(2), and bg(2) are the

weights and biases for the first and second layers of the

GCN, respectively for different use cases. After

processing through the GCN, the node features

encapsulate both the individual characteristics of the

data points and their contextual relationships within the

graphs. This enriched feature set is then fed into a

classifier for identification of malware types via equation

18,

𝑂 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐 ∗ ℎ𝑖(2) + 𝑏𝑐) (18)

Using Softmax, a final classification of malware

is applied where Wc and bc are the weight and bias for

the classification layer and O are output probabilities for

each malware class. Utilizing the Graph Network allows

it to capture and integrate both local and global structural

information and is perfect for classification in the

proposed model process. It leverages the efficiency of

graph based learning to uncover the relationships and

patterns of the data towards itself resulting in a very good

and sophisticated classification of malware classes. This

stage defines that the complex, multimodal features

were transformed into definitive categories, proving that

the model was able to decipher and reason out

misleading aspects of malware data samples.

Integration of Auto Encoders with Attention

Mechanisms is then significant in improving the

classification efficiency as malware evolve. The

objective of this fusion is to higher contribute flexibility to

new and advanced malware behavior while making our

system more resilient to the prevailing problem of high

false positive rates in traditional systems. An Auto

Encoder, a self learned feature extractor model,

compresses and reconstruct the input data to distill most

salient features. We consider the input features

produced from BiLSTM and GRU layers as vectors

H={h1,h2,...,hn}. The Auto Encoder comprises two main

components: It is between the encoder and the decoder

process. By equation 19 we have given the encoder

function.

𝑧 = 𝑅𝑒𝐿𝑈(𝑊𝑒 ⋅ 𝐻 + 𝑏𝑒) (19)

Where, We and be the weights and biases of the

encoder, z is the encoded (compressed) features. Given

via equation 20, the decoder function is intended to

reconstruct the input based on the encoded features.

𝐻 = 𝑅𝑒𝐿𝑈(𝑊𝑑 ⋅ 𝑧 + 𝑏𝑑) (20)

Where, Wd and bd are the weights and biases

of the decoders. The Auto Encoder is trained to minimize

their construction loss, which is defined via equation 21,

𝐿𝑀𝑆𝐸 =
1

𝑛
∑ (𝐻𝑖 − 𝐻𝑖′)2𝑛

𝑖=1 (21)

Let's look at the widely used Multiple Head

Attention Mechanism for instance which allows the

model to attend to different parts of the input sequence,

strengthening the parameters ability of learning from

different parts of the sequences. Equation 22, 23 and 24

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 77

are solved with respect to each k head pair, yielding

three matrices respectively:

𝑄𝑘 = 𝑊𝑄𝑘 ⋅ 𝑧 (22)

𝐾𝑘 = 𝑊𝐾𝑘 ⋅ 𝑧 (23)

𝑉𝑘 = 𝑊𝑉𝑘 ⋅ 𝑧 (24)

Where, WQk, WKk, and WVk are the weight

matrices for the query, key, and value, respectively

Using equation 25 each head computes attention

scores.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑘) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑘∗𝐾𝑘𝑇

√𝑑𝑘
) 𝑉𝑘 (25)

Where, dk is the dimension of the key vectors.

This scaling factor stops the dot products from being too

big in magnitude levels. The final linear layer is

performed through equation 26 by concatenating all

outputs from all heads,

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑊𝑜 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 1, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 2

, … , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑘) + 𝑏𝑜 (26)

With MultiHeadOutput representing the features

with the enhanced attention, focused at the most critical

part of malware classification, the attention mechanism

becomes the final output. Our proposed model

integrates Auto Encoders with Attention Mechanism to

achieve fine grain feature representation that is both

comprehensive and centered around the most

informative aspects of the data samples. Both the Auto

Encoder being able to efficiently reduce noise and

redundancy in the data, and the Attention Mechanism

directing the model’s focus to critical features allowing

for improved model ability to adapt to new and emerging

malware patterns. The result of this strategic

combination is an order of magnitude reduction in false

positives and increased adaptability leading to greater

efficiency in classifying malware classes. And, the output

isn’t just a set of malware classes, but rather, a

sophisticated categorization that mirrors and reflects a

model’s deep comprehension; and adaptive response to

the dynamic landscape of cyber threats. The next

section in this text presents an example use case that

can be subjected to the proposed model, which is then

evaluated in depth in terms of some performance metrics

for real time cases.

3. Example Use Case

The mode of malware detection and

classification in the overall structure of MPERGA model

is explained in a sequence of computational steps. It

means that the model input samples with each sample

described with a set of features that defines the

fingerprints of the possible malwares. The Recurrent

Network, Graph Network, and the fused-outcome Auto

Encoders with Attention Mechanisms learns the data

samples differently and gets aggregated towards the

final classifying results

The table 1 shows how data get transformed in

the Recurrent Network, it shows features extracted from

BiLSTM and GRU layers. The data samples, which were

first defined by a set of raw features from T2WML,

passes through a subspace to perform an advanced

analysis of temporal and contextual dependencies

between the various data samples.

The Table 2 represents the Recurrent Network

phase, then the features refined from Table 1 are feed in

to the Graph Network with the goal of mapping data

samples to different malware classes. The table

illustrates the role of graph-based structural analysis in

classification.

In Table 3 final stage, we use Auto Encoders

together with an Attention Mechanism to optimize

classification. This way the model will only deal with the

most important characteristics about the feature set,

resulting in a more accurate, as well as concise,

classification.

Table 1. Recurrent Network Output

Data Sample Raw Feature Set BiLSTM Output GRU Output

Sample 1 [0.45, 0.60] [0.58, 0.75] [0.62, 0.80]

Sample 2 [0.30, 0.85] [0.40, 0.88] [0.45, 0.90]

Sample 3 [0.65, 0.40] [0.70, 0.55] [0.72, 0.60]

Table 2. Graph Network Output

Data Sample GRU Output Graph Network Feature Classified Malware Class

Sample 1 [0.62, 0.80] [0.68, 0.85] Class A

Sample 2 [0.45, 0.90] [0.50, 0.93] Class B

Sample 3 [0.72, 0.60] [0.75, 0.65] Class A

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 78

Table 3. Auto Encoders with Attention Mechanism Output

Data Sample Graph Network Feature Attention Mechanism Focus Optimized Classification

Sample 1 [0.68, 0.85] [0.70, 0.90] Class A

Sample 2 [0.50, 0.93] [0.55, 0.95] Class B

Sample 3 [0.75, 0.65] [0.78, 0.70] Class A

Each of the data samples is transformed

through the Recurrent Network, Graph Network, and

then Auto Encoders coupled with Attention Mechanisms,

revealing just how deep and complicated the model can

get. The data are refined in each stage, to classify

malware types more accurately and more granularly.

The ability for proposed model of discriminating and

adapting to the complexities of malware behaviour is

evidenced in how the sequence of data progresses

through these stages, culminating in a sophisticated and

reliable classification system required for modern cyber

security need RF model performed better with both

datasets. RF gave greatest precision, recall and F1

score value of 96%, 95% and 95% respectively for

dataset 1, and precision, recall, and F1 score of 90%,

89% and 89% respectively, for dataset 2.

4. Result Analysis

Moving beyond the limitations of conventional

malware detection systems, the MPERGA model

inventively sits in the sphere of innovation in cyber

security. Using the RNNs and GNNs together in this

model is ingenious and it is capable of changing the way

in which complex malware patterns are analyzed and

classified. The RNN investigates the detailed work of

feature analysis of the malware data with a careful

attention to the subjective traits of the data. A key to

understanding of sophisticated malware behavior that

evolves over time is that it discerns subtle patterns and

temporal dependencies in the data. The GNN part of

MPERGA also makes a neat classifier by doing well at

interpreting the interdependent, graph like structure of

malware signatures. Most static or signature based

detection methods are often stymied with polymorphic or

metamorphic malware types, and in this dual structured

form stands in stark contrast. Typically, traditional

methods suffer from high rates of false positives and little

ability to adapt to new and emerging threats, invariably

due to their dependence on predefined signatures.

Limitations presented by these techniques are

transcended by MPERGA, which integrates Auto

Encoders with Attention Mechanisms. In the Auto

Encoders, dimensionality is reduced and noise is

effectively hammered out, and the data is filtered down

to the most interesting features. At the same time, the

Attention Mechanisms assign a dynamic and varying

attention to different parts of the data, allowing the model

to dynamically and adaptively prioritize data features for

detecting malware. As a result, the integration of this

harmonious nature allows one to have a deeper and

more sophisticated view regarding malware behavior,

improving the detection process' reliability and accuracy.

Finally, we obtain a model capable of identifying both

known malware variants with high precision and of

adapting to new unknown malwares, a salient leap

forward in cyber security sets.

The MPERGA experimental setup is built so as

to evaluate the effectiveness of MPERGA in prediction

of malware samples. This setup leverages two primary

data sources: It includes Malware Memory Analysis and

the Kharon Malware Database. For the sake of a

thorough MPERGA assessment, these sources are very

generous with malware samples.

4.1 Malware Memory Analysis

The data source consists of memory dumps

generated from infected systems to provide a real world

malware detection context. Samples include known and

unknown malware variants which represent the scenario

where MPERGA has to distinguish benign from

malicious system memory patterns.

Number of Samples: We estimate about 1.5

million memory dumps.

Malware Types: Ransomware, trojans, worms,

and rootkits are all included.

Data Collection Period: Three years (2021–

2024).

4.2 Kharon Malware Database

The Kharon Malware Database is a huge library,

full of malware exe’s and scripts, including incident

reports from around the world. Thus, this database offers

a rich variety of malware types which are used to

measure MPERGA's accuracy in classifying malware.

 Number of Samples: More than 2 million

unique malicious files.

 Variety: It has polymorphic and metamorphic

malware, complexity in detection.

 Update Frequency: New malware samples are

delivered bi-weekly.

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 79

4.3 Experimental Setup

4.3.1. Dataset Preparation

Both the datasets were preprocessed and

relevant features were extracted from the datasets from

both the sources. That included memory dump analysis

of Malware Memory Analysis, as well as static and

dynamic analysis of executables from the Kharon

Database.

4.3.1 Parameter Initialization

The following parameters were assigned to

MPERGA:

 Auto Encoders Layers: Auto Encoders had 3

layers with 256, 128, 64 nodes respectively.

 Recurrent Graph Relationship Analysis: I

used a Graph Convolutional Network (GCN)

with 2 layers.

 Attention Mechanism: 4 heads of Multi head

attention.

 Learning Rate: Adam optimizer with set to

0.001.

 Batch Size: 64 samples per batch.

 Epochs: Model trained for 50 epochs.

4.3.4 Training and Validation

70% of the data was used for training and 30%

used for validation. The model was checked with cross

validation techniques to be robust.

4.3.5 Performance Metrics

Results were calculated for both datasets in

terms of precision, accuracy, recall, delay and AUC. The

reason why these metrics were chosen is to give

someone a full understanding of how MPERGA works in

real world scenarios.

4.3.6 Hardware and Software Environment

We conducted experiments on a computing

cluster with NVIDIA Tesla V100 GPUs running Python

3.8 and TensorFlow 2.4.

4.3.7 Baseline Comparison

The performance of MPERGA was compared

against Malp Miner, SPPNet and GCDroid. For

relevance in today’s malware detection landscape, we

choose these models.

Its potential advantages are rigorously assessed

compared to existing methods in the study through this

experimental setup, which aims to assess MPERGA’s

performance in malware detection. It is expected that the

datasets range in diversity and that the evaluation

criteria used are comprehensive enough to give deep

insights regarding the effectiveness of the proposed

model in real world scenarios. On this setup we

performed precision (P), accuracy (A), recall (R), levels

based on this technique using equations 27,28 and 29

and we estimated the overall precision (AUC) and

specificity (Sp) using equations 30 and 31.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (27)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (28)

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (29)

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 (30)

𝑆𝑝 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (31)

There are three different kinds of test set

predictions: Let True Positive (TP) (malware instance

sets), False Positive (FP) (malware instance sets), and

False Negative (FN) (number of instances in test sets

that were incorrectly predicted as negative; they include

Normal Instance Samples). All these terminologies are

used in the documentation for the test sets. We

compared the projected Malware Instances likelihood

and the actual Malware Instances status in this test

dataset samples by using Malp Miner [3], SPPNet [12]

and GCDroid [24] techniques, to determine appropriate

TP, TN, FP and FN values for these scenarios.

Consequently, we could predict these metrics for results

of implemented model procedure suggested. The

precision levels derived by these assessments are

shown in Figure 3, The data have compelling narrative

to be drawn in the analysis of observed precision for

detecting malware samples in various models. As the

number of test malware samples (NTS) grows, the

performance of Malp Miner [3], SPPNet, GCDroid [24],

and MPERGA.

MPERGA achieves, for instance, a precision of

93.40% at the 70k NTS level, surpassing (93.40 vs.

86.53), Malp Miner, (76.89 vs. 78.85), SPPNet and

(78.85 vs. 86.53), GCDroid. The MPERGA trend off this

precision continues for different sample sizes. Thus,

while Malp Miner and SPPNet run at 130k NTS, they

both suffer a drop in precision to 78.06% and 79.85%,

respectively, compared to 89.00% precision of

MPERGA. It shows MPERGA’s ability to Generalize with

large datasets.

Further, at 170k NTS MPERGA achieves

97.44% precision, which is exceptionally high compared

to its competitors. It further shows that MPERGA does

not only perform efficiently on smaller datasets, but also

increases it’s performance as the complexity grows. This

capability is vital because it signifies higher ability to deal

with different and complex malware threats.

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 80

Figure 3. Observed Precision to detect Malware Samples

Figure 4. Observed Accuracy to detect Malware Samples

Figure 5. Observed Recall to detect Malware Samples

Again, GCDroid [24] shows its downfall at

76.48%, while MPERGA excels at 94.72% at the sample

size of 480k. This gap may be a result of the advanced

analytical capability of MPERGA, which uses Auto

Encoders and Attention Mechanisms in an innovative

way.

70.00

75.00

80.00

85.00

90.00

95.00

100.00

Number of Samples

Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

70.00

75.00

80.00

85.00

90.00

95.00

100.00
Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00
Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 81

Still, at 1M NTS, MPERGA leads yet again with

93.45 precision, only this time around, as sample sizes

grow, precision doesn't decrease. For real world

application where applied data volume can be massive

and unpredictable, this consistency is pivotal.

MPERGA achieves a precision of 93.65% in the

highest sample size tested, worth 1.2M NTS.

MPERGA’s ability to deal with such large and complex

datasets, compared to its nearest competitor at this level

GCDroid [24] at 85.07% shows its superior ability.

We verify notably good observed precision rates

over different sample sizes, putting a seal on MPERGA’s

effectiveness in malware detection. These high precision

rates in larger datasets indicate that this model has high

degree of adaptability and responsiveness to evolving

malware threats. Its ability to predict complex patterns

and discern complex patterns is likely achieved by the

addition of Auto Encoders and Attention Mechanisms

that helped it do very well in the Cyber Security domain.

A model like this has profound implications, providing a

more resounding and less onerous way for more quickly

and more effectively counter the increasing and

increasingly prevalent cyber threats. The models'

accuracy comparisons were similar to the above, and

they are shown below in figure 4.

At this earlier stage (at 70k NTS), we already

saw a big lead for MPERGA with accuracy of 88.87% vs

Malp Miner (80.56%), SPPNet (78.27%) and GCDroid

(80.03%). Real time applications require this higher

accuracy rate because the ability to accurately and

quickly identify malware quickly can mean the difference

between a potential security breach and the potential

victim company.

With the dataset size growing to 130k NTS,

MPERGA demonstrates an accuracy of 94.92%. This is

substantially higher for a competitor than its competitors

and the closest is SPPNet at 84.05%. In practice,

MPERGA’s reliability is higher in large data processing

environments, frequently seen in enterprise cyber

security operations.

The high accuracy (90.83%) of MPERGA at

midrange sample sizes, like 350k NTS means it is robust

with respect to large and varying data volumes. In real

time scenarios where data inflow is unpredictable and

can vary wildly, this aspect is especially important.

In fact, MPERGA's accuracy tops out at 1.1M

NTS at 97.40%, close to 5 times better than anyone else.

This high accuracy at such a large scale implies a

potential for MPERGA to handle large and complex

datasets, which are standard problem in modern cyber

security.

These accuracy levels have considerable

impact in real time environments. When cyber security is

of critical magnitude in an environment, e.g. financial

institutions, government networks, etc., high accuracy is

crucial. MPERGA is a model that is very accurate,

regardless of a change in sample sizes, which can

decrease the probability of malware intrusion by a large

margin. Not only does this protect sensitive data, it keeps

the critical systems running.

In addition, the high accuracy of MPERGA

implies the lower rate of false positives and false

negatives. This means fewer interruptions for false

alarms in real time operations and a reduced risk of

missing genuine threats. Maintaining operational

continuity and trust in cyber security is so important it

demands such efficiency. Figure 5 represents recall

levels:

MPERGA shows recall of 90.13%, which is

much larger than Malp Miner (78.76%), SPPNet

(85.07%), GCDroid (84.89%). And that superior recall

rate matters in early stage malware detection where we

can’t afford to miss any malware instances while not

letting them infect our system.

MPERGA always has high recall rates, and as

the sample size increases they remain high. For

instance, a recall rate of 170k NTS peaks out with

97.81%. This is evidence that MPERGA is extremely

effective at identifying malware on different datasets,

and is a critical quality for real-time malware detection

systems where the volume and complexity of the data

change rapidly.

Especially in cases where failure to find even a

single instance of malware could result in devastating

consequences, the recall rate is of particular importance.

For example, in the banking and financial services, or

critical infrastructure systems, a high recall rate ensures

that serious malware cannot bypass the detection

system and therefore negate security.

MPERGA keeps the same recall rates as at

650k and 1M NTS, i.e. 95.79% and 94.07% respectively,

outperforming its counterparts at higher sample sizes.

This shows that MPERGA is scalably and effectively

deployable in large and previously complex cyber

security environments, which are critical for large scale

cyber security operations.

One cannot overstate the impact of high recall in

real time situations. A model with a high recall such as

MPERGA is designed in such a way that a wider

proportion of actual malware is detected, decreasing the

risk of an undetected malware causing harm. Under

such situations as in government networks, healthcare

systems and industrial control systems, it is especially

critical.In addition, a high recall rate decreases the need

for manual review and intervention resulting in increased

efficiency of cyber security operations. This enables

faster, more automated responses to potential threats

and as threat actors continuously innovate new

methods, this is especially useful. Similarly, Figure 6

tabulates the delay required of the prediction process.

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 82

Figure 6. Observed Delay to detect Malware Samples

Figure 7. Observed AUC to detect Malware Samples

Figure 8. Observed Specificity to detect Malware Samples

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00
Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 83

MPERGA continues to show lower delay in

malware detection in analyzing the data, at different

sample sizes (NTS). As an example, MPERGA’s delay

is 90.70 ms located at 70k NTS; thus, it is lower than

Malp Miner (105.13 ms), SPPNet (106.08 ms) and

GCDroid (99.79 ms). It is highly desirable for real time

scenarios wherein a millisecond can either make or

break a malware attack, and our approach significantly

reduces the delay.

MPERGA remains efficient as the sample size

grows. For example MPERGA's delay is 85.46 ms and it

is certainly smaller than the rest. The fact that MPERGA

can process and analyze data in real time, is an essential

property in non-stop data flow environments where the

amounts of data is huge.

MPERGA, which applies in larger datasets,

records only a delay of 77.95 ms, which is one of the

lowest across all sample sizes. This is particularly

impressive because MPERGA can handle large-scale

data without much loss of speed, a critical requirement

for large and complex digital environments.

In the real time cases, a lower delay is of

significant importance. In financial services, healthcare,

and national security, even a short delay in detecting and

stopping malware can do real damage to the

organization: breaches of data, financial loss, and

compromising sensitive information. An MPERGA based

model with its reduced detection delay provides a more

robust defense against such the abomen threats.

Additionally, a lower delay increases cyber

security operations’ overall efficiency. This gives

increased ability for rapid response times allowing for

security teams to respond quickly after a threat has been

detected. It is important because it enables an

immediate response to malware attacks, in order to

minimize affects and protect the integrity and continuity

of operations.

Overall, the delay data observed suggests the

significantly superior effectiveness of MPERGA as a

real-time detector in malware detection scenarios. Its

speed and precision in processing and analyzing data

for different sizes of data samples show it’s very

applicable for deployment in environments that require

speed and accuracy. MPERGA is a powerful weapon

with which to fight new cyber threats owing to it making

this a more secure and more operational efficient

environment. Likewise with figure 7, the AUC levels can

be derived as follows.

MPERGA’s AUC are shown to perform better

than the other methods we evaluated, for all test sample

sizes (NTS), as measured by the analysis of its results.

As a demo case, with an NTS of 70k, MPERGA can

achieve AUC of 85.75, much higher than that of Malp

Miner (72.13), SPPNet (70.64), and GCDroid (68.57).

The ability for MPERGA to correctly classify malware is

strong, and is necessary for early detection and

prevention.

MPERGA maintains good performance as the

sample size increases. The AUC of 93.41 at 170k NTS

is a significant improvement over its competitors. This

indicates that MPERGA is an effective method at

identifying malware at increasing levels of complexity

and volume of data, which is a crucial property for the

development of scalable real time malware detection

systems.

The implications of a high AUC in real time are

of large implication. For example, in sectors where cyber

security is paramount, such as financial services, health

care, and national security, a model of high AUC like

MPERGA can really reduce risk of type 2 (false

negatives, failing to identify malware) and type 1 (false

positives, wrong label benign software as malware)

errors. This accuracy is essential to resist malicious

attacks and for system smooth running.

Finally, the robustness of AUC of 89.07 at such

extensive and complex (e.g., 1.2M NTS) data sizes

shows MPERGA’s robustness. Due to the rapidly

growing quantity of data that these environments

process, and also the need of us to carry out reliable

malware detection to maintain operability, this is

extremely important.

Also, a high AUC means that the model is more

trusted to automate decisions to a much greater extent,

leading to less manual intervention and, as a result,

more speed in cyber security operations. It is especially

relevant in real time systems where accuracy of

detection and the speed of response are equally

important.

Overall, these AUC values observed for these

models particularly the superior performance of

MPERGA indicates its effectiveness and reliability in real

time malware detection. Its capability to keep high AUC

values across different sample sizes shows it’s ready for

use in numerous and intricate cyber security

environments, making it a great boon in guarding digital

infrastructures facing developing cyber threats.

Similarly, the Specificity levels in figure 8 are observed

to be similarly.

We assess the specificity of MPERGA for NTS

and it performs strongly in specificity. As an example,

such as for a segmental recalled 70k NTS MPERGA’s

specificity of 84.07% is higher than Malp Miner (77.03%),

SPPNet (81.31%), and GCDroid (78.10%). This

suggests how efficient MPERGA is in detecting

legitimate software and conclude from that, the way to

lower the amount of interruptions due to false alarms is.

MPERGA has a high level of specificity for the

dataset size, as the dataset size increases. For example,

with 170k NTS its specificity is a good 93.83%, better

than its competitors. The high specificity implies that

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 84

MPERGA should pick up well on malware even as the

dataset gets more complicated.

High specificity has significant impact in real

time applications. In such sectors as healthcare

systems, financial services, industrial control systems, a

high specificity rate is crucial, as small errors lead to

large business disruptions due to false positives. It

makes sure the cyber security measures don’t

mistakenly paint legitimate, necessary software as

suspect and act, resulting in unnecessary, maybe even

harmful, disruption.

Additionally, as this scale up process transpires,

at 1.2M NTS, MPERGA is able to maintain specificity of

90.81%, indicating that it can properly scale up. This is

particularly important in large and complex digital

systems with abundant legitimate software and systems,

but high cost of false positives.

Additionally, to keep user confidence in cyber

security systems, a high specificity rate is a prerequisite.

Frequent false positives can also mean your users start

to ignore security alerts and stop paying attention to true

dangers.

In summary, the observed performance of these

models, especially the high performance of MPERGA,

suggest that MPERGA is effective in real time malware

detection scenarios. MPERGA can achieve high

specificity rate at several sample size ranges, indicating

the stability and efficiency of MPERGA to differentiate

malware from a non-malware. With this in mind,

MPERGA is an important tool for anyone who wants to

be sure that digital infrastructures are secure and

continue to function smoothly, while limiting the

disruption resulting from false positives.

5. Conclusion and Future Scopes

This study research has resulted in

development and validation of a novel approach — the

Malware Prediction Model MPERGA — an innovative

approach that combined Auto Encoders and Attention

Mechanisms into a Recurrent Graph Relationship

Analysis framework. Results of a comprehensive

evaluation using Malware Memory Analysis and the

Kharon Malware Database show MPERGA to

outperform existing models, such as Malp Miner,

SPPNet, and GCDroid. For the above-mentioned

metrics such as precision, accuracy, recall, delay and

AUC, the model has done so in a remarkable fashion.

Existing demographic data shows an 8.3%

increase in the ability of MPERGA to do so

programmatically over other forms of demographic data

and a further 8.5% increase over simple statistical

methods. Through a superior recall rate compared to all

other classifiers in identifying true instances of malware,

the model is clearly effective for preventing system

infringements at higher sample sizes. Additionally, AUC

values are greater and detection delay is smaller for

MPERGA compared to malware detection methods in

the literature, highlighting its efficiency and reliability in

the classification of malware and non malware

instances, and its ability to minimize disruptions

introduced by false positives.

MPERGA is indeed having great impacts on

cyber security. As an effective way for protecting digital

infrastructures, it will be able to adapt to the evolving

threats as well as to its ability to handle extensive and

complex datasets. Thanks to the high accuracy and fast

computational speed, the model can robustly defend

against malware attacks, and play a significant role in

guarding sensitive systems in financial, medical and

national security related sectors.

6. Future Scope

The enhancements and applications of

MPERGA are many and look ahead. Future research

can focus on the following areas:

 Integration with IoT and Edge Computing:

With the rapid growth in the number of Internet

of Things (IoT) devices, the adaptation of

MPERGA targeted for efficient operation in edge

computing environments may offer robust

security solutions with such immense networks.

 Adaptation to Zero-Day Malware: Improving

the model's ability to predict zero day attacks,

which are one of the biggest problems in

cybersecurity, would be a big improvement.

 Real-Time Application in Diverse

Environments: Moving MPERGA out into the

real world with actual corporate networks, but

also critical infrastructure, and seeing how it

works allows us to learn and further refine the

project.

 Ethical AI Considerations: The more powerful

AI models get, the more crucial will be ensuring

that they are being used in an ethical way — i.e.

with regards to privacy and data security.

 Cross-Domain Adaptability: Other domains,

such as fraud detection or intrusion detection

systems, could be investigated to see if

MPERGA is applicative.

Finally, MPERGA is a giant step forward for

cybersecurity. The ability to detect malware in an

accurate and efficient manner has huge promise for

improving digital security. With future developments and

applications of such model, this model can provide not

only an advancement of the field of cybersecurity but

also enable a safe network which is more and more

interconnected and based upon digital technologies.

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 85

References

[1] F. Zhong, Z. Chen, M. Xu, G. Zhang, D. Yu, X.
Cheng, Malware-on-the-Brain: Illuminating
Malware Byte Codes with Images for Malware
Classification. IEEE Transactions on Computers,
72(2), (2023) 438-451.
https://doi.org/10.1109/TC.2022.3160357

[2] A. bin Asad, R. Mansur, S. Zawad, N. Evan, M.I.
Hossain, Analysis of Malware Prediction Based
on Infection Rate Using Machine Learning
Techniques. IEEE Region 10 Symposium
(TENSYMP), IEEE, Bangladesh.
https://doi.org/10.1109/TENSYMP50017.2020.9
230624

[3] M.F. Abdelwahed, M.M. Kamal, G. Sayed,
Detecting Malware Activities with MalpMiner: A
Dynamic Analysis Approach. IEEE Access, 11,
(2023) 84772-84784.
https://doi.org/10.1109/ACCESS.2023.3266562

[4] K. Rana, S. Gupta, G. Kaur, A.L. Yadav, (2024)
Malware Detection in Network Traffic using
Machine Learning. International Conference on
Applied Artificial Intelligence and Computing
(ICAAIC), IEEE, India.
https://doi.org/10.1109/ICAAIC60222.2024.1057
5355

[5] O.E. Kural, E. Kiliç, C. Aksaç,
Apk2Audio4AndMal: Audio Based Malware
Family Detection Framework. IEEE Access, 11,
(2023) 27527-27535.
https://doi.org/10.1109/ACCESS.2023.3258377

[6] H. Kim, M. Kim, (2024) Malware Detection and
Classification System Based on CNN-BiLSTM.
Electronics, 13(13), 2539.
https://doi.org/10.3390/electronics13132539

[7] K.A. Dhanya, P. Vinod, S.Y. Yerima, A. Bashar,
A. David, T. Abhiram, A. Antony, A.K. Shavanas,
G. Kumar, Obfuscated Malware Detection in IoT
Android Applications Using Markov Images and
CNN. IEEE Systems Journal, 17(2), (2023) 2756-
2766.
https://doi.org/10.1109/JSYST.2023.3238678

[8] Y.H. Chen, S.C. Lin, S.C. Huang, C.L. Lei, C.Y.
Huang, Guided Malware Sample Analysis Based
on Graph Neural Networks. IEEE Transactions
on Information Forensics and Security, 18, (2023)
4128-4143.
https://doi.org/10.1109/TIFS.2023.3283913

[9] D.Y.M. Benchadi, B. Batalo, K. Fukui, Efficient
Malware Analysis Using Subspace-Based
Methods on Representative Image Patterns.
IEEE Access, 11, (2023) 102492-102507.
https://doi.org/10.1109/ACCESS.2023.3313409

[10] I. Gulatas, H.H. Kilinc, A.H. Zaim, M. A. Aydin,
Malware Threat on Edge/Fog Computing
Environments From Internet of Things Devices
Perspective. IEEE Access, 11, (2023) 33584-
33606.

https://doi.org/10.1109/ACCESS.2023.3262614

[11] B. Jin, J. Choi, J.B. Hong, H. Kim, On the
Effectiveness of Perturbations in Generating
Evasive Malware Variants. IEEE Access, 11,
(2023) 31062-31074.
https://doi.org/10.1109/ACCESS.2023.3262265

[12] J. Jeon, B. Jeong, S. Baek, Y.S. Jeong, Static
Multi Feature-Based Malware Detection Using
Multi SPP-net in Smart IoT Environments. IEEE
Transactions on Information Forensics and
Security, 19, (2024) 2487-2500.
https://doi.org/10.1109/TIFS.2024.3350379

[13] M. Venkatasubramanian, A.H. Lashkari, S.
Hakak, IoT Malware Analysis Using Federated
Learning: A Comprehensive Survey. IEEE
Access, 11, (2023) 5004-5018.
https://doi.org/10.1109/ACCESS.2023.3235389

[14] E.C. Bayazit, O.K. Sahingoz, B. Dogan,
Protecting Android Devices from Malware
Attacks: A State-of-the-Art Report of Concepts,
Modern Learning Models and Challenges. IEEE
Access, 11, (2023) 123314-123334.
https://doi.org/10.1109/ACCESS.2023.3323396

[15] G.W. Wong, Y.T. Huang, Y.R. Guo, Y. Sun, M.C.
Chen, Attention-Based API Locating for Malware
Techniques. IEEE Transactions on Information
Forensics and Security, 19, (2024) 1199-1212.
https://doi.org/10.1109/TIFS.2023.3330337

[16] D.T. Uysal, P.D. Yoo, K. Taha, Data-Driven
Malware Detection for 6G Networks: A Survey
from the Perspective of Continuous Learning and
Explainability via Visualisation. IEEE Open
Journal of Vehicular Technology, 4, (2023) 61-71.
https://doi.org/10.1109/OJVT.2022.3219898

[17] S. Ali, O. Abusabha, F. Ali, M. Imran, T.
Abuhmed, Effective Multitask Deep Learning for
IoT Malware Detection and Identification Using
Behavioral Traffic Analysis. IEEE Transactions
on Network and Service Management, 20(2),
(2023) 1199-1209.
https://doi.org/10.1109/TNSM.2022.3200741

[18] S. Li, Y. Li, X. Wu, S.A. Otaibi, Z. Tian,
Imbalanced Malware Family Classification Using
Multimodal Fusion and Weight Self-Learning. in
IEEE Transactions on Intelligent Transportation
Systems, 24(7), (2023) 7642-7652.
https://doi.org/10.1109/TITS.2022.3208891

[19] U. Ahmed, J.C. W. Lin, G. Srivastava, A. Jolfaei,
Active Learning Based Adversary Evasion
Attacks Defense for Malwares in the Internet of
Things. IEEE Systems Journal, 17(2), (2023)
2434-2444.
https://doi.org/10.1109/JSYST.2022.3223694

[20] W. Niu, Y. Wang, X. Liu, R. Yan, X. Li, X. Zhang,
GCDroid: Android Malware Detection Based on
Graph Compression With Reachability
Relationship Extraction for IoT Devices. IEEE
Internet of Things Journal, 10(13), (2023) 11343-

https://doi.org/10.1109/TC.2022.3160357
https://doi.org/10.1109/TENSYMP50017.2020.9230624
https://doi.org/10.1109/TENSYMP50017.2020.9230624
https://doi.org/10.1109/ACCESS.2023.3266562
https://doi.org/10.1109/ICAAIC60222.2024.10575355
https://doi.org/10.1109/ICAAIC60222.2024.10575355
https://doi.org/10.1109/ACCESS.2023.3258377
https://doi.org/10.3390/electronics13132539
https://doi.org/10.1109/JSYST.2023.3238678
https://doi.org/10.1109/TIFS.2023.3283913
https://doi.org/10.1109/ACCESS.2023.3313409
https://doi.org/10.1109/ACCESS.2023.3262614
https://doi.org/10.1109/ACCESS.2023.3262265
https://doi.org/10.1109/TIFS.2024.3350379
https://doi.org/10.1109/ACCESS.2023.3235389
https://doi.org/10.1109/ACCESS.2023.3323396
https://doi.org/10.1109/TIFS.2023.3330337
https://doi.org/10.1109/OJVT.2022.3219898
https://doi.org/10.1109/TNSM.2022.3200741
https://doi.org/10.1109/TITS.2022.3208891
https://doi.org/10.1109/JSYST.2022.3223694

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 86

11356.
https://doi.org/10.1109/JIOT.2023.3241697

[21] H. Lee, S. Kim, D. Baek, D. Kim, D. Hwang,
Robust IoT Malware Detection and Classification
Using Opcode Category Features on Machine
Learning. IEEE Access, 11, (2023) 18855-18867.
https://doi.org/10.1109/JIOT.2023.3241697

[22] M. Torres, R. Álvarez, M. Cazorla, A Malware
Detection Approach Based on Feature
Engineering and Behavior Analysis, IEEE
Access, 11, (2023) 105355-105367.
https://doi.org/10.1109/ACCESS.2023.3319093

[23] L. Huang, J. Xue, Y. Wang, D. Qu, J. Chen, N.
Zhang, L. Zhang, EAODroid: Android malware
detection based on enhanced API order. Chinese
Journal of Electronics, 32(5), (2023) 1169-1178.
https://doi.org/10.23919/cje.2021.00.451

[24] H. Manthena, J.C. Kimmel, M. Abdelsalam, M.
Gupta, Analyzing and Explaining Black-Box
Models for Online Malware Detection. IEEE
Access, 11, (2023) 25237-25252.
https://doi.org/10.1109/ACCESS.2023.3255176

[25] S. Kasarapu, S. Shukla, S.M.
PudukotaiDinakarrao, Resource- and Workload-
Aware Model Parallelism-Inspired Novel Malware
Detection for IoT Devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, 42(12), (2023) 4618-4628.
https://doi.org/10.1109/TCAD.2023.3290128

[26] T.H. Hai, V. Van Thieu, T.T. Duong, H.H.
Nguyen, E.N. Huh, A Proposed New Endpoint
Detection and Response With Image-Based
Malware Detection System. IEEE Access, 11,
(2023) 122859-122875.
https://doi.org/10.1109/ACCESS.2023.3329112

[27] F. A. Almarshad, M. Zakariah, G. A. Gashgari, E.
A. Aldakheel and A. I. A. Alzahrani, Detection of
Android Malware Using Machine Learning and
Siamese Shot Learning Technique for Security.
IEEE Access, 11, (2023) 127697-127714.
https://doi.org/10.1109/ACCESS.2023.3331739

[28] T. He, C. Han, R. Isawa, T. Takahashi, S. Kijima,
J. Takeuchi, Scalable and Fast Algorithm for
Constructing Phylogenetic Trees With
Application to IoT Malware Clustering. IEEE
Access, 11, (2023) 8240-8253.
https://doi.org/10.1109/ACCESS.2023.3238711

[29] Y. He, Y. Liu, L. Wu, Z. Yang, K. Ren, Z. Qin,
MsDroid: Identifying Malicious Snippets for
Android Malware Detection. IEEE Transactions
on Dependable and Secure Computing, 20(3),
(2023) 2025-2039.
https://doi.org/10.1109/TDSC.2022.3168285

[30] L.d. Costa, V. Moia, A Lightweight and Multi-
Stage Approach for Android Malware Detection
Using Non-Invasive Machine Learning
Techniques. IEEE Access, 11, (2023) 73127-
73144.

https://doi.org/10.1109/ACCESS.2023.3296606

[31] J. Qiu, Q.L. Han, W. Luo, L. Pan, S. Nepal, J.
Zhang, Y. Xiang, Cyber code intelligence for
android malware detection. IEEE Transactions
on Cybernetics, 53(1), (2022) 617-627.
https://doi.org/10.1109/TCYB.2022.3164625

[32] H. Alamro, W. Mtouaa, S. Aljameel, A.S. Salama,
M.A. Hamza, A.Y. Othman, Automated Android
Malware Detection Using Optimal Ensemble
Learning Approach for Cyber security. IEEE
Access, 11, (2023) 72509-72517.
https://doi.org/10.1109/ACCESS.2023.3294263

[33] Y. Zhang, G. Gui, S. Mao, A Lightweight Malware
Traffic Classification Method Based on a Broad
Learning Architecture, IEEE Internet of Things
Journal, 10(23), (2023) 21131-21132.
https://doi.org/10.1109/JIOT.2023.3297210

[34] H. Kheddar, Y. Himeur, A.I. Awad, Deep transfer
learning for intrusion detection in industrial
control networks: A comprehensive review. In
Journal of Network and Computer Applications
220, (2023) 103760.
https://doi.org/10.1016/j.jnca.2023.103760

[35] A. Gueriani, H. Kheddar, A.C. Mazari, (2023)
Deep Reinforcement Learning for Intrusion
Detection in IoT: A Survey. International
Conference on Electronics, Energy and
Measurement (IC2EM), IEEE, Medea.
https://doi.org/10.1109/IC2EM59347.2023.1041
9560

[36] M. Anusha, M. Karthika, Deep Learning Based
Maldroid Stacked Propagate Network for Android
Malware Prediction for Security Enhancement.
Indian Journal of Science and Technology,
17(45), (2024) 4743-4755.
https://doi.org/10.17485/IJST/v17i45.3099

[37] C. Duthie, G.J.W. Kathrine, G. Amala Nikitha,
S.B. Xavier, I.J. Jebadurai, (2023) Deep Learning
based Malware Analysis, Prediction and
Prevention, 4th International Conference on
Electronics and Sustainable Communication
Systems (ICESC), IEEE, India.
https://doi.org/10.1109/ICESC57686.2023.1019
3068

[38] T. Kalpana, (2023) Malware Prediction and
Classification for Android Applications Using
Machine Learning Techniques. International
Conference on Computer Communication and
Informatics (ICCCI), IEEE, India.
https://doi.org/10.1109/ICCCI56745.2023.10128
513

[39] M. Basak, D.W Kim, M.M. Han, G.Y. Shin,
Attention-Based Malware Detection Model by
Visualizing Latent Features Through Dynamic
Residual Kernel Network. Sensors, 24(24),
(2024) 7953. https://doi.org/10.3390/s24247953

[40] M. Basak, M.M. Han, CyberSentinel: A
Transparent Defense Framework for Malware

https://doi.org/10.1109/JIOT.2023.3241697
https://doi.org/10.1109/JIOT.2023.3241697
https://doi.org/10.1109/ACCESS.2023.3319093
https://doi.org/10.23919/cje.2021.00.451
https://doi.org/10.1109/ACCESS.2023.3255176
https://doi.org/10.1109/TCAD.2023.3290128
https://doi.org/10.1109/ACCESS.2023.3329112
https://doi.org/10.1109/ACCESS.2023.3331739
https://doi.org/10.1109/ACCESS.2023.3238711
https://doi.org/10.1109/TDSC.2022.3168285
https://doi.org/10.1109/ACCESS.2023.3296606
https://doi.org/10.1109/TCYB.2022.3164625
https://doi.org/10.1109/ACCESS.2023.3294263
https://doi.org/10.1109/JIOT.2023.3297210
https://doi.org/10.1016/j.jnca.2023.103760
https://doi.org/10.1109/IC2EM59347.2023.10419560
https://doi.org/10.1109/IC2EM59347.2023.10419560
https://doi.org/10.17485/IJST/v17i45.3099
https://doi.org/10.1109/ICESC57686.2023.10193068
https://doi.org/10.1109/ICESC57686.2023.10193068
https://doi.org/10.1109/ICCCI56745.2023.10128513
https://doi.org/10.1109/ICCCI56745.2023.10128513
https://doi.org/10.3390/s24247953

Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 87

Detection in High-Stakes Operational
Environments. Sensors, 24(11), (2024) 3406.
https://doi.org/10.3390/s24113406

Authors Contribution Statement

Mahesh T. Dhande - Visualization, Methodology,

Experimental investigation, Data collection, Formal

analysis, Writing-Original draft. Sanjaykumar Tiwari -

Conceptualization, Supervision, Coordination of

research, Methodology, Validation, Writing - Review of

original draft and editing. Nikhil J. Rathod - Supervision,

Coordination of research, Validation, Writing - Review of

original draft and editing. All the authors read and

approved the draft.

Funding

The authors declare that no funds, grants or any other

support were received during the preparation of this

manuscript.

Competing Interests

The authors declare that there are no conflicts of interest

regarding the publication of this manuscript.

Data Availability

The data supporting the findings of this study can be

obtained from the corresponding author upon

reasonable request.

Has this article screened for similarity?

Yes

About the License

© The Author(s) 2025. The text of this article is open

access and licensed under a Creative Commons

Attribution 4.0 International License.

https://doi.org/10.3390/s24113406

