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Abstract: The threat of modern malware in the world of cyber security has grown and how the need for proper 

detection and analysis techniques has grown with it. All these conventional approaches are insufficient methods if 

used to detect new or emerging strains of malware. For this need, the present research develops a novel Malware 

Prediction Model using Auto Encoders and Attention Mechanisms to advance Malware Pattern Analysis. This new 

approach goes beyond the conventional wisdom because it decodes complex patterns of malware into identifiable 

Malware Classes utilizing the unique Recurrent Graph Relationship Analysis. Recurrent Networks perform the 

complex task of Feature Analysis and simultaneously. Classical approaches mainly conceive pattern matching where 

signatures are taken and used to look in the system hence cannot detect polymorphic or metamorphic types of 

viruses. Additionally, these systems have high levels of false positives and poor ability to learn from new types of 

threats. On the other hand, the coupling of Auto Encoders with Attention Mechanisms in the model under 

consideration allows the model to gain better insights of malware behavior. Such an integration not only improves 

the identification of multiform patterns but also changes the approach to growing threats more effectively. The use of 

this model was benchmarked against two databases: The Malware Memory Analysis and The Kharon Malware 

Database Samples. Strikingly, the proposed model provided 8.3% more precision, 8.5% more accuracy, 5.9% higher 

recall, 6.5% better AUC, higher specificity by 9.4%, while slight reduction in delay by 2.9% to other methods. 

Keywords: Malware Prediction, Auto Encoders, Attention Mechanisms, Recurrent Graph Analysis, Cyber security, 

Scenarios 

 

1. Introduction 

Conforming to the relentless pace of digital 

technology evolution, cyber threats and the 

corresponding malware have also escalated. Malicious 

malware has become sophisticated and ever more 

challenging to cybersecurity. Traditional malware 

detection system is usually signature based or heuristic 

and they struggle to keep up with the hype and 

diversification of malware [1]. This inadequacy spurred a 

need of more advance and dynamic techniques for 

malware detection and analysis. 

With an advance in machine learning and 

artificial intelligence, new frontiers of cyber security have 

been opened that promise solutions to these challenges. 

Nevertheless, these technologies' application to 

malware detection has been hampered by its own set of 

limitations [2]. Issues are common such as generally 

high false positive rates, the inability to find zero-day 

attacks, and lack of flexibility to new and developing 

malware strains. Additionally, the malware obfuscation 

makes it dynamic and prevents detection of malware, 

which requires a model that not only edges known 

malware patterns but also predicts the unknown variant 

[3, 4]. 

This approach normalizes variable size API call 

sequences into a fixed size representation where little 

information is lost [5]. To improve identification of 

malware with Bidirectional Long Short Termin (BiLSTM) 

a sliding window technique data preprocessing method 

is focused on. The goal of the system is to improve both 

response accuracy and response efficiency to evolving 

malware threats [6]. 

To overcome those challenges, this paper 

presents an innovative Malware Prediction Model which 

combines Auto Encoders and Attention Mechanisms, a 

new concept in malicious code study. This fusion of 

these technologies enhances our ability to identify the 

deeper and more nuanced attributes of malware 

patterns. By incorporating Auto Encoders into distilling 

complex malware signatures into more manageable 

representations, the Attention Mechanisms enable the 
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model to pay attention on salient features of malware 

data and thus improving detection accuracy. 

Recurrent Graph Relationship Analysis is the 

core of this model. From Recurrent Neural Networks 

(RNNs) and Graph Networks hybrid, a novel approach is 

presented. RNNs excel at feature analysis for sequential 

data that is just the thing that malware patterns are [7]. 

As such, we use the Graph Networks as the classifiers 

that leverage relational information from the data for a 

more holistic interpretation of the malware ecosystems. 

The proposed model is not based on theory, but 

has been solidly tested against existing databases such 

as Malware Memory Analysis and Kharon Malware 

database. As for results they are promising with that 

showing improvement in several key performance 

metrics compared to existing models. This is not only an 

advancement in malware detection capability but also 

sets the groundwork for future research in this critical 

role of the cyber security scenarios. We then review 

existing models and describe how to design the 

proposed model. Results are discussed in section 4 and 

a conclusion in section 5. 

 

1.1 Motivation & Contributions 

Cyber threat sophistication on the rise: Urgent 

need for more advanced detection systems. The crux of 

the motivation for this research lies in this necessity. 

Therefore, the crux leading to this research is its 

necessity. The landscape of rapidly evolving cyber 

threats is making traditional malware detection methods 

more and more ineffective. However, these 

conventional, mostly signature-based approaches are 

unable to cope with a new or previously unknown 

targets, namely zero-day attacks. Such limitations call 

for a paradigm shift in malware detectors so that they not 

only overcome current inadequacies, but able to handle 

future threats. 

To address this critical need, the current 

research presents a groundbreaking Malware Prediction 

Model, which departs from conventional models. The 

motivation for the conception of the model is the 

hypothesis that integrating Auto Encoders with Attention 

Mechanisms will make the analysis and prediction of 

malware patterns a more powerful exercise. This 

integration hopes to address currently existent problems 

of malware detection with high false positives and 

inability to adapt to new malware types. 

This research makes several important 

contributions. It is first, to apply Auto Encoders in tandem 

with Attention Mechanisms in the malware analysis 

domain, a novel use case in the field. This integration 

reduces the high false positives that plague most 

existing systems, and provides for a more nuanced and 

precise analysis of malware data. Secondly, malware 

classification with Recurrent Graph Relationship 

Analysis is a new perspective. The model uses 

Recurrent Neural Networks for feature analysis and 

Graph Networks [8] as a classifier to further appreciate 

the patterns and relationship of malware. 

Additionally, the research also adds to the field 

with empirical validation. We rigorously tested the model 

against the Malware Memory Analysis dataset and the 

Kharon Malware Database, achieving higher 

performance than existing method across multiple 

important metrics, including precision, accuracy, recall, 

AUC, specificity, and response time. The results 

presented here not only validate the model proposed but 

also show the model's potential as a robust framework 

to fight against evolving cyber threats. 

 

2. Deep Dive into Malware Detection Models 

Malware detection and analysis literature review 

show continuous progress and challenges in this area of 

rapidly evolving field. The combination of each study 

provides unique insights and methods for 

understanding, and ultimately dealing with, the malware 

threat. 

Representative image patterns were explored 

by Benchadi et al. [9] for efficient malware analysis via 

subspace-based methods. It made use of image 

processing and pattern recognition to show that visual 

analysis methods may be employed in malware 

analysis. This work is in line with the recent trend to use 

non-traditional data representation techniques for 

malware detection. In Edge/Fog computing 

environments, Gulatas et al. [10] concentrated on the 

malware threat, especially from the viewpoint of Internet 

of Things (IoT) devices. Their work highlights how cyber 

threats are evolving their landscape and models that can 

accommodate different computing environments in IoT 

are needed. In the dynamic analysis space, Abdelwahed 

et al. [3] have proposed MalpMiner, a malware miner for 

detecting malware activities. They focused on malwares 

analysis through which behavioral analysis plays an 

essential role and their method comes on the importance 

of behavioral analysis to understand and to identify 

malwares which is one of the aspects of our proposed 

model in this paper. Zhong et al. [1] demonstrated a 

novel approach of malware classification by converting 

the malware byte codes into images, called Malware-on-

the-Brain. This innovative visualization of malware 

mentioned in this study resonates with the visual 

analysis method on which this study was based upon. In 

Jin et al. [11], the efficacy of perturbations to generate 

evasive malware variants was investigated. This work 

reinforces the need for adaptable and dynamic models 

by reaffirming the difficulties of detecting metamorphic 

malware that is continually evolving to evade detection 

systems. 

Static multi-feature-based malware detection in 

smart IoT environments was studied by Jeon et al. [12]. 

The incorporation of spatial pyramid pooling networks in 
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their study is in agreement with the use of sophisticated 

methods of feature extraction under scrutiny by the 

proposed model of this research. In a comprehensive 

survey on IoT malware analysis using federated 

learning, Venkatasubramanian et al. [13] were trained. 

The work focused on IoT and federated learning 

highlights the future direction of the current research—

decentralized learning approaches in malware detection. 

The state of the art in safeguarding Android devices from 

malware attacks has been provided by Bayazit et al. [14]. 

The themes of modern learning models with associated 

challenges with Android systems complement the 

broader theme of evolving malware detection strategies. 

The proposed model of this research aligns with the 

attention mechanisms used in the proposed API locating 

method for malware techniques of Wong et.al [15]. In 

addition, their findings further validate the use of 

attention based methodologies in malware analysis. As 

discussed by [16] Uysal et al, the 6G network must have 

a continuous learning capability in order to detect 

malware. The development of future proof malware 

detection models requires this perspective. 

Ali et al. [17] utilize behavioral traffic analysis to 

explore multitask deep learning for malware detection in 

IoT. Deep learning and behavioral analysis methodology 

used by the authors of the current research is further 

supplemented by the use of deep learning and 

behavioral analysis in their study as well. Multimodal 

fusion and weight self-learning were developed by Li et 

al. [18] to address the challenge of imbalanced malware 

family classification. Transforming the treatment of 

imbalanced data sets provides a valuable view on how 

to improve classification accuracy in malware detection 

models. Akram et al. [7] worked on obfuscated malware 

detection using Markov images and convolutional neural 

networks (CNN). The focus coincides with the need for 

emergent techniques to detect sophisticated malware 

variants: their obfuscation and use of CNNs. Ahmed et 

al. [19] proposed active learning based defense 

approaches to counter adversary evasion attacks on 

malwares in IoT. This research complements defensive 

measures with an adversarial attack and active learning 

strategy focus. Niu et al. [20] presented GCDroid, an 

Android malware detection approach through graph 

compression and extraction of reachability relationship 

for IoT devices. The graph network aspect in the 

proposed model also has its parallels in the graph based 

methods used in malware detection. 

IoT malware detection was explored by Lee et 

al. [21] using the combination of opcode category 

features with a machine learning approach. One point of 

similarity that those approaches share with the feature 

extraction process used in the proposed model of this 

research is that they emphasised the importance of 

opcode analysis in the understanding of the behaviours 

of the malware. In [22], Torres et al. have proposed a 

malware detection approach by means of feature 

engineering and behavior analysis. The importance of 

behavioral analysis for malware detection is resonated 

by this study, which underscores the importance of 

understanding malware activity patterns, which are 

prevalent in current research. In 2018, Kural et al. [5] 

offered an audio based malware family detection 

framework called Apk2Audio4AndMal. Their novel 

modality of data representation — converting APK files 

to audio for analysis — serves as a proof of concept for 

the usage of alternative data representations in malware 

classification. An Android malware detection system 

based on enhanced API order is developed by Huang et 

al. [23] namedEAODroid. This establishes the structural 

aspects related to malware and provides the insights into 

malware detection of the API order in Android malware 

detection. In black box models of online malware 

detection, Manthena et al. [24] highlighted the need for 

explainable AI. The research of their work on 

interpretability in malware detection models is critical for 

the fostering defense of transparent and trustworthy AI. 

In the context of IoT environment, Kasarapu et 

al. [25] develop a resource- and workload-aware 

malware detection model, pointing out the requirement 

of efficient and scalable solutions in resource 

constrained environments such as IoT. Hai et al. [26] 

proposed a new image based malware detection to help 

detect and respond to new malicious endpoint. The work 

on visualizing malware complements image processing 

appearing in the proposed model of this research, 

generally relating to malware analysis. Recently, 

Almarshad et al. [27] studied Android malware detection 

by employing machine learning and Siamese Shot 

Learning. Through applying one shot learning to 

malware detection we introduce a novel way of handling 

limited data situations. I applied the scalable algorithm 

developed by He et al. [28] to clustering of IoT malware 

phylogenetic trees. The results presented in their 

approach to malware clustering shed light on the 

relations and development of malware families. He et al. 

[29] proposed MsDroid, which is a graph neares 

networks based approach to identify malicious snippets 

for Android malware detection. The graph based 

analysis within the proposed model makes use of graph 

neural networks in this study. 

In Costa and Moia introduced a lightweight, 

multi stage Android malware detection approach with 

non invasive machine learning technics [30]. Real time 

malware detection systems require their lightweight and 

efficient models. Through deep neural networks and 

multiview features, Qiu et al. [31] propose Cyber Code 

Intelligence for Android malware detection. The results 

of this research point to the need for multiview analysis 

to unlock the codes behind complex malware patterns. 

In their work [8], Chen et al proposed a guided malware 

sample analysis with graph neural networks. Data graph 

based methods such as graph neural networks applied 

to malware analysis further validate the effectiveness of 

graph based methods for malware analysis.  
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Figure 1. Architecture for the Proposed Classification 

Process 

Alamro, et al. [32] reported on automated 

detection of Android malware using an optimal ensemble 

learning. Our study shows that ensemble learning 

techniques could potentially improve the accuracy of 

malware detection. Zhang et al. [33] made the final 

attempt to develop a lightweight malware traffic 

classification method with a broad learning architecture. 

The contribution of their malware traffic classification 

approach emphasizes the critical requirement for the 

malware detection to be efficient, scalable solutions for 

malware detection in the cases of IoT environments. [34, 

-37] also show that malwares can also do intrusion in the 

network scenarios. 

Overall, these studies [4, 2, 38, 39] together 

provide a glimpse of the dynamical and multipolar 

character of the malware detection research. These offer 

insights [6, 40] on the need to develop innovative, 

flexible, and panoramic approaches that could counter 

the constantly changing cyber environment. The results 

and insights presented in these studies provide valuable 

guidance for the foundation and development of the 

proposed model in this research, based on the 

combination of advanced machine learning methods 

with behavioral analysis and new data representation 

techniques. 

As per figure 1, The sequential data processing 

uncovers hidden patterns and temporal relationships 

crucial to cyber defenders for understanding evolving 

behavior of malware. Contributing to this, Graph 

Networks present the structural intricacies of malware 

data by exploiting their unique ability to perform graph 

analysis and classification over a data structure 

resembling a graph — where the malware data are 

interconnected. They are powerful, non Euclidean data 

handling networks, with a deep understanding of the 

relational context within the data samples. Auto 

Encoders also aid in reducing the dimensionality of the 

complex data while meticulously encoding the data into 

a lower dimensional, yet informative expression thereby 

removing noise levels from the focus of the model and 

keeping them on salient features. This is important for 

the ability to distill the essence of the malware signatures 

and so help more effectively to classify. Unlike the 

previous build, the integration of Attention Mechanisms 

provides another degree of sophistication, specifically by 

actively reallocating the model’s focus to the most 

relevant features at any given instance sets. This 

mechanism adapts to the changing nature of the 

malware threats, and therefore the model stays attentive 

to the important information in the data to increase 

detection accuracy levels. 

 

2.1 Flowchart 

 As per figure 2, the MPERGA model, while being 

highly efficient in feature analysis process, uses a very 

good variant of fusion that consists of BiLSTM 

(Bidirectional Long Short-Term Memory) and GRU 

(Gated Recurrent Unit) networks to excavate the hidden 

details from the input data samples. This complex job 

first involves translating raw data to a form suitable for it 

to be processed sequentially. An input sequence is 

represented as X{X={x1,x2,...,xn}, where xi is the feature 

vector of i–th sample in the i–th sequence set. 
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Figure 2. Overall Flow of the Proposed Classification 

Process 

The BiLSTM is able to capture bidirectional 

dependencies because it processes this sequence not 

forwards but in both directions. The dual processing 

mechanism allows the network to collect contextual 

information from both previous and future states, a key 

property in understanding how personalizing the 

malwares is learned. The forward and backward LSTM 

units are defined as follows, 

● Forward LSTM, is represented via equations 1, 2, 3, 

4 & 5 as follows, 

ℎ𝑡𝑓 = 𝑜𝑡𝑓 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡𝑓)   (1) 

𝑜𝑡𝑓 = 𝜎(𝑊𝑜𝑓 ∗ 𝑥𝑡 + 𝑈𝑜𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑜𝑓) (2) 

𝑐𝑡𝑓 = 𝑓𝑡𝑓 ∗ 𝑐𝑓(𝑡 − 1) + 𝑖𝑡𝑓 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑓 ∗ 𝑥𝑡 + 𝑈𝑐𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑐𝑓) (3) 

𝑓𝑡𝑓 = 𝜎(𝑊𝑓𝑓 ∗ 𝑥𝑡 + 𝑈𝑓𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑓𝑓) (4) 

𝑖𝑡𝑓 = 𝜎(𝑊𝑖𝑓 ∗ 𝑥𝑡 + 𝑈𝑖𝑓 ∗ ℎ𝑓(𝑡 − 1) + 𝑏𝑖𝑓) (5) 

● Backward LSTM is represented via equations 6, 7, 

8, 9 & 10 as follows, 

ℎ𝑡𝑏 = 𝑜𝑡𝑏 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡𝑏)    (6) 

𝑜𝑡𝑏 = 𝜎(𝑊𝑜𝑏 ∗ 𝑥𝑡 + 𝑈𝑜𝑏 ∗ ℎ𝑏(𝑡 + 1) + 𝑏𝑜𝑏) (7) 

𝑐𝑡𝑏 = 𝑓𝑡𝑏 ∗ 𝑐𝑏(𝑡 + 1) + 𝑖𝑡𝑏 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑏 ∗ 𝑥𝑡 + 𝑈𝑐𝑏 ∗ ℎ𝑏(𝑡 + 1)

+ 𝑏𝑐𝑏)      (8) 

𝑓𝑡𝑏 = 𝜎(𝑊𝑓𝑏 ∗ 𝑥𝑡 + 𝑈𝑓𝑏 ∗ ℎ𝑏(𝑡 + 1) + 𝑏𝑓𝑏) (9) 

 𝑖𝑡𝑏 = 𝜎(𝑊𝑖𝑏 ∗ 𝑥𝑡 + 𝑈𝑖𝑏 ∗ ℎ𝑏(𝑡 + 1) + 𝑏𝑖𝑏) (10) 

σ may be interpretation as the sigmoid activation 

function, htf and htb are the hidden state at time t for 

forward and backward LSTMs respectively, and ctf and 

ctb are the the cell states, and W, U, and b are the 

weights and biases for different gates (input, forget, and 

output) depending on which scenario it is. The model 

extracts bidirectional features with BiLSTM, and 

combines GRU to further refine these features. GRU has 

the advantage of being simple and efficient and captures 

the dependencies within sequences without having 

separate memory cells. A GRU works like this:  

Where, σ can be interpretation as the activation 

function for sigmoid, htf and htb are the hidden state at 

time t for forward and backward LSTMs respectively, htf 

and htb are the the cell state, and W, U, and b are the 

weights and biases for different gates (input, forget, 

output) depending on the scenario. We use BiLSTM to 

extract bidirectional features and combine GRU to 

further refine these features. GRU is simple and efficient 

and it captures the dependencies within sequences 

without additional cells of memory. GRU, known for its 

efficiency and simplicity, effectively captures the 

dependencies in sequences without the need for 

separate memory cells. The operations within a GRU 

works as follows 

● GRU Operations are represented via equations 11, 

12, 13 & 14 as follows, 

𝑧𝑡 = 𝜎(𝑊𝑧 ∗ 𝑥𝑡 + 𝑈𝑧 ∗ ℎ(𝑡 − 1) + 𝑏𝑧)   (11) 

𝑟𝑡 = 𝜎(𝑊𝑟 ∗ 𝑥𝑡 + 𝑈𝑟 ∗ ℎ(𝑡 − 1) + 𝑏𝑟)   (12) 

ℎ~𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ∗ 𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ(𝑡 − 1)) + 𝑏ℎ) (13) 



Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025 

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 76 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ(𝑡 − 1) + 𝑧𝑡 ⊙ ℎ~𝑡 (14) 

Each elementwise multiplication, zt ⊙ rt and 

each update and reset gates zt and rt respectively. rt is 

able to allow the model to reset its state and discard 

irrelevant information trained on, meaning that only the 

most important information about the data is analyzed. 

H = {h1, h2,...,hn}, is the combined output and a rich and 

comprehensive features representation from the input 

data samples by the output from BiLSTM and GRU. Now 

refined, these features are highly representative to the 

underlying pattern in the malware data, and constitute 

the input for subsequent stages of the proposed model, 

while they provide a nuanced and effective approach to 

the malware detection process. The combination of 

BiLSTM and GRU not only benefits from these previous 

components but also fuses them together into a 

harmonious, powerful system for deep feature analysis 

in cyber security applications. 

Thereafter, a Graph Network acts as an 

important classifier to transform the feature extracted by 

this process to the appropriate malware classes. Each 

input to the Graph Network (with BiLSTM and GRU 

layers) is processed through features thus extracted, H 

= {h1, h2,...,hn}, with hi representing the features (loss) 

vector for the ith data point set. The Graph Network is 

based on Graph Convolutional Networks (GCNs), 

where, rather than on vector operations, the primary 

operation is to operate on data modeled as graphs. The 

core idea is to upgrade each node (data point) feature 

representation by scanning features from its adjacent 

nodes in the graph and capture the local structure and 

feature of the graphs. For the process of feature 

aggregation and update of the GCN, the math 

formulated in equation 15. 

    𝑎𝑖 = ∑
ℎ𝑗

√𝑑𝑖∗𝑑𝑗𝑗∈𝑁𝑗                (15) 

Where, summing over its neighbors N(i) sets, a 

i is the aggregated feature for node i. The di is the degree 

of node i (number of connections), and dj is the degree 

of its neighbor and node j sets. In current scenarios, the 

aggregation considers the normalization factor to avoid 

the scale of the features to grow very large. The Feature 

Update process is also represented in equation 16 

similarly. 

ℎ𝑖′ = 𝜎(𝑊𝑔𝑎𝑖 + 𝑏𝑔)    (16) 

Two features (aggregated features), are feeding 

into a linear, ReLU activation σ, for different feature sets 

and they are updated with the aid of a weight matrix Wg 

and a bias bg. For each sample set, the new feature 

representation hi′ for node i created. GCN is composed 

of multiple layers and each layer performs node feature 

updates using output of the previous layers. According 

to equation 17, the final updated feature of a node in 

these layers is represented. 

ℎ𝑖(2) = 𝜎(𝑊𝑔(2)𝜎(𝑊𝑔(1)𝑎𝑖(1) + 𝑏𝑔(1)) + 𝑏𝑔(2)) (17) 

Where, Wg(1), bg(1), Wg(2), and bg(2) are the 

weights and biases for the first and second layers of the 

GCN, respectively for different use cases. After 

processing through the GCN, the node features 

encapsulate both the individual characteristics of the 

data points and their contextual relationships within the 

graphs. This enriched feature set is then fed into a 

classifier for identification of malware types via equation 

18, 

𝑂 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐 ∗ ℎ𝑖(2) + 𝑏𝑐)   (18) 

Using Softmax, a final classification of malware 

is applied where Wc and bc are the weight and bias for 

the classification layer and O are output probabilities for 

each malware class. Utilizing the Graph Network allows 

it to capture and integrate both local and global structural 

information and is perfect for classification in the 

proposed model process. It leverages the efficiency of 

graph based learning to uncover the relationships and 

patterns of the data towards itself resulting in a very good 

and sophisticated classification of malware classes. This 

stage defines that the complex, multimodal features 

were transformed into definitive categories, proving that 

the model was able to decipher and reason out 

misleading aspects of malware data samples. 

Integration of Auto Encoders with Attention 

Mechanisms is then significant in improving the 

classification efficiency as malware evolve. The 

objective of this fusion is to higher contribute flexibility to 

new and advanced malware behavior while making our 

system more resilient to the prevailing problem of high 

false positive rates in traditional systems. An Auto 

Encoder, a self learned feature extractor model, 

compresses and reconstruct the input data to distill most 

salient features. We consider the input features 

produced from BiLSTM and GRU layers as vectors 

H={h1,h2,...,hn}. The Auto Encoder comprises two main 

components: It is between the encoder and the decoder 

process. By equation 19 we have given the encoder 

function. 

𝑧 = 𝑅𝑒𝐿𝑈(𝑊𝑒 ⋅ 𝐻 + 𝑏𝑒)    (19) 

Where, We and be the weights and biases of the 

encoder, z is the encoded (compressed) features. Given 

via equation 20, the decoder function is intended to 

reconstruct the input based on the encoded features. 

𝐻 = 𝑅𝑒𝐿𝑈(𝑊𝑑 ⋅ 𝑧 + 𝑏𝑑)    (20) 

Where, Wd and bd are the weights and biases 

of the decoders. The Auto Encoder is trained to minimize 

their construction loss, which is defined via equation 21, 

𝐿𝑀𝑆𝐸 =
1

𝑛
∑ (𝐻𝑖 − 𝐻𝑖′)2𝑛

𝑖=1    (21) 

Let's look at the widely used Multiple Head 

Attention Mechanism for instance which allows the 

model to attend to different parts of the input sequence, 

strengthening the parameters ability of learning from 

different parts of the sequences. Equation 22, 23 and 24 
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are solved with respect to each k head pair, yielding 

three matrices respectively: 

𝑄𝑘 = 𝑊𝑄𝑘 ⋅ 𝑧     (22) 

𝐾𝑘 = 𝑊𝐾𝑘 ⋅ 𝑧    (23) 

𝑉𝑘 = 𝑊𝑉𝑘 ⋅ 𝑧      (24) 

Where, WQk, WKk, and WVk are the weight 

matrices for the query, key, and value, respectively 

Using equation 25 each head computes attention 

scores. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑘) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑘∗𝐾𝑘𝑇

√𝑑𝑘
) 𝑉𝑘 (25) 

Where, dk is the dimension of the key vectors. 

This scaling factor stops the dot products from being too 

big in magnitude levels. The final linear layer is 

performed through equation 26 by concatenating all 

outputs from all heads, 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑊𝑜 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 1, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 2

, … , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑘) + 𝑏𝑜      (26) 

With MultiHeadOutput representing the features 

with the enhanced attention, focused at the most critical 

part of malware classification, the attention mechanism 

becomes the final output. Our proposed model 

integrates Auto Encoders with Attention Mechanism to 

achieve fine grain feature representation that is both 

comprehensive and centered around the most 

informative aspects of the data samples. Both the Auto 

Encoder being able to efficiently reduce noise and 

redundancy in the data, and the Attention Mechanism 

directing the model’s focus to critical features allowing 

for improved model ability to adapt to new and emerging 

malware patterns. The result of this strategic 

combination is an order of magnitude reduction in false 

positives and increased adaptability leading to greater 

efficiency in classifying malware classes. And, the output 

isn’t just a set of malware classes, but rather, a 

sophisticated categorization that mirrors and reflects a 

model’s deep comprehension; and adaptive response to 

the dynamic landscape of cyber threats. The next 

section in this text presents an example use case that 

can be subjected to the proposed model, which is then 

evaluated in depth in terms of some performance metrics 

for real time cases. 

 

3. Example Use Case 

The mode of malware detection and 

classification in the overall structure of MPERGA model 

is explained in a sequence of computational steps. It 

means that the model input samples with each sample 

described with a set of features that defines the 

fingerprints of the possible malwares. The Recurrent 

Network, Graph Network, and the fused-outcome Auto 

Encoders with Attention Mechanisms learns the data 

samples differently and gets aggregated towards the 

final classifying results 

The table 1 shows how data get transformed in 

the Recurrent Network, it shows features extracted from 

BiLSTM and GRU layers. The data samples, which were 

first defined by a set of raw features from T2WML, 

passes through a subspace to perform an advanced 

analysis of temporal and contextual dependencies 

between the various data samples. 

The Table 2 represents the Recurrent Network 

phase, then the features refined from Table 1 are feed in 

to the Graph Network with the goal of mapping data 

samples to different malware classes. The table 

illustrates the role of graph-based structural analysis in 

classification. 

In Table 3 final stage, we use Auto Encoders 

together with an Attention Mechanism to optimize 

classification. This way the model will only deal with the 

most important characteristics about the feature set, 

resulting in a more accurate, as well as concise, 

classification. 

 

Table 1. Recurrent Network Output 

Data Sample Raw Feature Set BiLSTM Output GRU Output 

Sample 1 [0.45, 0.60] [0.58, 0.75] [0.62, 0.80] 

Sample 2 [0.30, 0.85] [0.40, 0.88] [0.45, 0.90] 

Sample 3 [0.65, 0.40] [0.70, 0.55] [0.72, 0.60] 

 

Table 2. Graph Network Output 

Data Sample GRU Output Graph Network Feature Classified Malware Class 

Sample 1 [0.62, 0.80] [0.68, 0.85] Class A 

Sample 2 [0.45, 0.90] [0.50, 0.93] Class B 

Sample 3 [0.72, 0.60] [0.75, 0.65] Class A 
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Table 3. Auto Encoders with Attention Mechanism Output 

Data Sample Graph Network Feature Attention Mechanism Focus Optimized Classification 

Sample 1 [0.68, 0.85] [0.70, 0.90] Class A 

Sample 2 [0.50, 0.93] [0.55, 0.95] Class B 

Sample 3 [0.75, 0.65] [0.78, 0.70] Class A 

 

Each of the data samples is transformed 

through the Recurrent Network, Graph Network, and 

then Auto Encoders coupled with Attention Mechanisms, 

revealing just how deep and complicated the model can 

get. The data are refined in each stage, to classify 

malware types more accurately and more granularly. 

The ability for proposed model of discriminating and 

adapting to the complexities of malware behaviour is 

evidenced in how the sequence of data progresses 

through these stages, culminating in a sophisticated and 

reliable classification system required for modern cyber 

security need RF model performed better with both 

datasets. RF gave greatest precision, recall and F1 

score value of 96%, 95% and 95% respectively for 

dataset 1, and precision, recall, and F1 score of 90%, 

89% and 89% respectively, for dataset 2. 

 

4. Result Analysis 

Moving beyond the limitations of conventional 

malware detection systems, the MPERGA model 

inventively sits in the sphere of innovation in cyber 

security. Using the RNNs and GNNs together in this 

model is ingenious and it is capable of changing the way 

in which complex malware patterns are analyzed and 

classified. The RNN investigates the detailed work of 

feature analysis of the malware data with a careful 

attention to the subjective traits of the data. A key to 

understanding of sophisticated malware behavior that 

evolves over time is that it discerns subtle patterns and 

temporal dependencies in the data. The GNN part of 

MPERGA also makes a neat classifier by doing well at 

interpreting the interdependent, graph like structure of 

malware signatures. Most static or signature based 

detection methods are often stymied with polymorphic or 

metamorphic malware types, and in this dual structured 

form stands in stark contrast. Typically, traditional 

methods suffer from high rates of false positives and little 

ability to adapt to new and emerging threats, invariably 

due to their dependence on predefined signatures. 

Limitations presented by these techniques are 

transcended by MPERGA, which integrates Auto 

Encoders with Attention Mechanisms. In the Auto 

Encoders, dimensionality is reduced and noise is 

effectively hammered out, and the data is filtered down 

to the most interesting features. At the same time, the 

Attention Mechanisms assign a dynamic and varying 

attention to different parts of the data, allowing the model 

to dynamically and adaptively prioritize data features for 

detecting malware. As a result, the integration of this 

harmonious nature allows one to have a deeper and 

more sophisticated view regarding malware behavior, 

improving the detection process' reliability and accuracy. 

Finally, we obtain a model capable of identifying both 

known malware variants with high precision and of 

adapting to new unknown malwares, a salient leap 

forward in cyber security sets. 

The MPERGA experimental setup is built so as 

to evaluate the effectiveness of MPERGA in prediction 

of malware samples. This setup leverages two primary 

data sources: It includes Malware Memory Analysis and 

the Kharon Malware Database. For the sake of a 

thorough MPERGA assessment, these sources are very 

generous with malware samples. 

 

4.1 Malware Memory Analysis 

The data source consists of memory dumps 

generated from infected systems to provide a real world 

malware detection context. Samples include known and 

unknown malware variants which represent the scenario 

where MPERGA has to distinguish benign from 

malicious system memory patterns. 

Number of Samples: We estimate about 1.5 

million memory dumps. 

Malware Types: Ransomware, trojans, worms, 

and rootkits are all included. 

Data Collection Period: Three years (2021–

2024). 

 

4.2 Kharon Malware Database 

The Kharon Malware Database is a huge library, 

full of malware exe’s and scripts, including incident 

reports from around the world. Thus, this database offers 

a rich variety of malware types which are used to 

measure MPERGA's accuracy in classifying malware. 

 Number of Samples: More than 2 million 

unique malicious files. 

 Variety: It has polymorphic and metamorphic 

malware, complexity in detection. 

 Update Frequency: New malware samples are 

delivered bi-weekly. 
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4.3 Experimental Setup 

4.3.1. Dataset Preparation 

Both the datasets were preprocessed and 

relevant features were extracted from the datasets from 

both the sources. That included memory dump analysis 

of Malware Memory Analysis, as well as static and 

dynamic analysis of executables from the Kharon 

Database. 

 

4.3.1 Parameter Initialization 

The following parameters were assigned to 

MPERGA: 

 Auto Encoders Layers: Auto Encoders had 3 

layers with 256, 128, 64 nodes respectively. 

 Recurrent Graph Relationship Analysis: I 

used a Graph Convolutional Network (GCN) 

with 2 layers. 

 Attention Mechanism: 4 heads of Multi head 

attention. 

 Learning Rate: Adam optimizer with set to 

0.001. 

 Batch Size: 64 samples per batch. 

 Epochs: Model trained for 50 epochs. 

 

4.3.4 Training and Validation 

70% of the data was used for training and 30% 

used for validation. The model was checked with cross 

validation techniques to be robust. 

 

4.3.5 Performance Metrics 

Results were calculated for both datasets in 

terms of precision, accuracy, recall, delay and AUC. The 

reason why these metrics were chosen is to give 

someone a full understanding of how MPERGA works in 

real world scenarios. 

 

4.3.6 Hardware and Software Environment 

We conducted experiments on a computing 

cluster with NVIDIA Tesla V100 GPUs running Python 

3.8 and TensorFlow 2.4. 

 

4.3.7 Baseline Comparison 

The performance of MPERGA was compared 

against Malp Miner, SPPNet and GCDroid. For 

relevance in today’s malware detection landscape, we 

choose these models. 

Its potential advantages are rigorously assessed 

compared to existing methods in the study through this 

experimental setup, which aims to assess MPERGA’s 

performance in malware detection. It is expected that the 

datasets range in diversity and that the evaluation 

criteria used are comprehensive enough to give deep 

insights regarding the effectiveness of the proposed 

model in real world scenarios. On this setup we 

performed precision (P), accuracy (A), recall (R), levels 

based on this technique using equations 27,28 and 29 

and we estimated the overall precision (AUC) and 

specificity (Sp) using equations 30 and 31. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 +  𝐹𝑃)   (27) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
   (28) 

  𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 +  𝐹𝑁)  (29) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅   (30) 

𝑆𝑝 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)    (31) 

There are three different kinds of test set 

predictions: Let True Positive (TP) (malware instance 

sets), False Positive (FP) (malware instance sets), and 

False Negative (FN) (number of instances in test sets 

that were incorrectly predicted as negative; they include 

Normal Instance Samples). All these terminologies are 

used in the documentation for the test sets. We 

compared the projected Malware Instances likelihood 

and the actual Malware Instances status in this test 

dataset samples by using Malp Miner [3], SPPNet [12] 

and GCDroid [24] techniques, to determine appropriate 

TP, TN, FP and FN values for these scenarios. 

Consequently, we could predict these metrics for results 

of implemented model procedure suggested. The 

precision levels derived by these assessments are 

shown in Figure 3, The data have compelling narrative 

to be drawn in the analysis of observed precision for 

detecting malware samples in various models. As the 

number of test malware samples (NTS) grows, the 

performance of Malp Miner [3], SPPNet, GCDroid [24], 

and MPERGA. 

MPERGA achieves, for instance, a precision of 

93.40% at the 70k NTS level, surpassing (93.40 vs. 

86.53), Malp Miner, (76.89 vs. 78.85), SPPNet and 

(78.85 vs. 86.53), GCDroid. The MPERGA trend off this 

precision continues for different sample sizes. Thus, 

while Malp Miner and SPPNet run at 130k NTS, they 

both suffer a drop in precision to 78.06% and 79.85%, 

respectively, compared to 89.00% precision of 

MPERGA. It shows MPERGA’s ability to Generalize with 

large datasets. 

Further, at 170k NTS MPERGA achieves 

97.44% precision, which is exceptionally high compared 

to its competitors. It further shows that MPERGA does 

not only perform efficiently on smaller datasets, but also 

increases it’s performance as the complexity grows. This 

capability is vital because it signifies higher ability to deal 

with different and complex malware threats. 
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Figure 3. Observed Precision to detect Malware Samples 

Figure 4. Observed Accuracy to detect Malware Samples 

 

Figure 5. Observed Recall to detect Malware Samples 

Again, GCDroid [24] shows its downfall at 

76.48%, while MPERGA excels at 94.72% at the sample 

size of 480k. This gap may be a result of the advanced 

analytical capability of MPERGA, which uses Auto 

Encoders and Attention Mechanisms in an innovative 

way. 

70.00

75.00

80.00

85.00

90.00

95.00

100.00

Number of Samples

Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

70.00

75.00

80.00

85.00

90.00

95.00

100.00
Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00
Malp Miner [3] SPPNet [6] GCDroid [15] MPERGA



Vol 7 Iss 1 Year 2025 Mahesh T. Dhande et.al, /2025 

Int. Res. J. Multidiscip. Technovation, 7(1) (2025) 71-87 | 81 

Still, at 1M NTS, MPERGA leads yet again with 

93.45 precision, only this time around, as sample sizes 

grow, precision doesn't decrease. For real world 

application where applied data volume can be massive 

and unpredictable, this consistency is pivotal. 

MPERGA achieves a precision of 93.65% in the 

highest sample size tested, worth 1.2M NTS. 

MPERGA’s ability to deal with such large and complex 

datasets, compared to its nearest competitor at this level 

GCDroid [24] at 85.07% shows its superior ability. 

We verify notably good observed precision rates 

over different sample sizes, putting a seal on MPERGA’s 

effectiveness in malware detection. These high precision 

rates in larger datasets indicate that this model has high 

degree of adaptability and responsiveness to evolving 

malware threats. Its ability to predict complex patterns 

and discern complex patterns is likely achieved by the 

addition of Auto Encoders and Attention Mechanisms 

that helped it do very well in the Cyber Security domain. 

A model like this has profound implications, providing a 

more resounding and less onerous way for more quickly 

and more effectively counter the increasing and 

increasingly prevalent cyber threats. The models' 

accuracy comparisons were similar to the above, and 

they are shown below in figure 4. 

At this earlier stage (at 70k NTS), we already 

saw a big lead for MPERGA with accuracy of 88.87% vs 

Malp Miner (80.56%), SPPNet (78.27%) and GCDroid 

(80.03%). Real time applications require this higher 

accuracy rate because the ability to accurately and 

quickly identify malware quickly can mean the difference 

between a potential security breach and the potential 

victim company. 

With the dataset size growing to 130k NTS, 

MPERGA demonstrates an accuracy of 94.92%. This is 

substantially higher for a competitor than its competitors 

and the closest is SPPNet at 84.05%. In practice, 

MPERGA’s reliability is higher in large data processing 

environments, frequently seen in enterprise cyber 

security operations. 

The high accuracy (90.83%) of MPERGA at 

midrange sample sizes, like 350k NTS means it is robust 

with respect to large and varying data volumes. In real 

time scenarios where data inflow is unpredictable and 

can vary wildly, this aspect is especially important. 

In fact, MPERGA's accuracy tops out at 1.1M 

NTS at 97.40%, close to 5 times better than anyone else. 

This high accuracy at such a large scale implies a 

potential for MPERGA to handle large and complex 

datasets, which are standard problem in modern cyber 

security. 

These accuracy levels have considerable 

impact in real time environments. When cyber security is 

of critical magnitude in an environment, e.g. financial 

institutions, government networks, etc., high accuracy is 

crucial. MPERGA is a model that is very accurate, 

regardless of a change in sample sizes, which can 

decrease the probability of malware intrusion by a large 

margin. Not only does this protect sensitive data, it keeps 

the critical systems running. 

In addition, the high accuracy of MPERGA 

implies the lower rate of false positives and false 

negatives. This means fewer interruptions for false 

alarms in real time operations and a reduced risk of 

missing genuine threats. Maintaining operational 

continuity and trust in cyber security is so important it 

demands such efficiency. Figure 5 represents recall 

levels: 

MPERGA shows recall of 90.13%, which is 

much larger than Malp Miner (78.76%), SPPNet 

(85.07%), GCDroid (84.89%). And that superior recall 

rate matters in early stage malware detection where we 

can’t afford to miss any malware instances while not 

letting them infect our system. 

MPERGA always has high recall rates, and as 

the sample size increases they remain high. For 

instance, a recall rate of 170k NTS peaks out with 

97.81%. This is evidence that MPERGA is extremely 

effective at identifying malware on different datasets, 

and is a critical quality for real-time malware detection 

systems where the volume and complexity of the data 

change rapidly. 

Especially in cases where failure to find even a 

single instance of malware could result in devastating 

consequences, the recall rate is of particular importance. 

For example, in the banking and financial services, or 

critical infrastructure systems, a high recall rate ensures 

that serious malware cannot bypass the detection 

system and therefore negate security. 

MPERGA keeps the same recall rates as at 

650k and 1M NTS, i.e. 95.79% and 94.07% respectively, 

outperforming its counterparts at higher sample sizes. 

This shows that MPERGA is scalably and effectively 

deployable in large and previously complex cyber 

security environments, which are critical for large scale 

cyber security operations. 

One cannot overstate the impact of high recall in 

real time situations. A model with a high recall such as 

MPERGA is designed in such a way that a wider 

proportion of actual malware is detected, decreasing the 

risk of an undetected malware causing harm. Under 

such situations as in government networks, healthcare 

systems and industrial control systems, it is especially 

critical.In addition, a high recall rate decreases the need 

for manual review and intervention resulting in increased 

efficiency of cyber security operations. This enables 

faster, more automated responses to potential threats 

and as threat actors continuously innovate new 

methods, this is especially useful. Similarly, Figure 6 

tabulates the delay required of the prediction process. 
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Figure 6. Observed Delay to detect Malware Samples 

 

Figure 7. Observed AUC to detect Malware Samples 

 

Figure 8. Observed Specificity to detect Malware Samples 
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MPERGA continues to show lower delay in 

malware detection in analyzing the data, at different 

sample sizes (NTS). As an example, MPERGA’s delay 

is 90.70 ms located at 70k NTS; thus, it is lower than 

Malp Miner (105.13 ms), SPPNet (106.08 ms) and 

GCDroid (99.79 ms). It is highly desirable for real time 

scenarios wherein a millisecond can either make or 

break a malware attack, and our approach significantly 

reduces the delay. 

MPERGA remains efficient as the sample size 

grows. For example MPERGA's delay is 85.46 ms and it 

is certainly smaller than the rest. The fact that MPERGA 

can process and analyze data in real time, is an essential 

property in non-stop data flow environments where the 

amounts of data is huge. 

MPERGA, which applies in larger datasets, 

records only a delay of 77.95 ms, which is one of the 

lowest across all sample sizes. This is particularly 

impressive because MPERGA can handle large-scale 

data without much loss of speed, a critical requirement 

for large and complex digital environments. 

In the real time cases, a lower delay is of 

significant importance. In financial services, healthcare, 

and national security, even a short delay in detecting and 

stopping malware can do real damage to the 

organization: breaches of data, financial loss, and 

compromising sensitive information. An MPERGA based 

model with its reduced detection delay provides a more 

robust defense against such the abomen threats. 

Additionally, a lower delay increases cyber 

security operations’ overall efficiency. This gives 

increased ability for rapid response times allowing for 

security teams to respond quickly after a threat has been 

detected. It is important because it enables an 

immediate response to malware attacks, in order to 

minimize affects and protect the integrity and continuity 

of operations. 

Overall, the delay data observed suggests the 

significantly superior effectiveness of MPERGA as a 

real-time detector in malware detection scenarios. Its 

speed and precision in processing and analyzing data 

for different sizes of data samples show it’s very 

applicable for deployment in environments that require 

speed and accuracy. MPERGA is a powerful weapon 

with which to fight new cyber threats owing to it making 

this a more secure and more operational efficient 

environment. Likewise with figure 7, the AUC levels can 

be derived as follows. 

MPERGA’s AUC are shown to perform better 

than the other methods we evaluated, for all test sample 

sizes (NTS), as measured by the analysis of its results. 

As a demo case, with an NTS of 70k, MPERGA can 

achieve AUC of 85.75, much higher than that of Malp 

Miner (72.13), SPPNet (70.64), and GCDroid (68.57). 

The ability for MPERGA to correctly classify malware is 

strong, and is necessary for early detection and 

prevention. 

MPERGA maintains good performance as the 

sample size increases. The AUC of 93.41 at 170k NTS 

is a significant improvement over its competitors. This 

indicates that MPERGA is an effective method at 

identifying malware at increasing levels of complexity 

and volume of data, which is a crucial property for the 

development of scalable real time malware detection 

systems. 

The implications of a high AUC in real time are 

of large implication. For example, in sectors where cyber 

security is paramount, such as financial services, health 

care, and national security, a model of high AUC like 

MPERGA can really reduce risk of type 2 (false 

negatives, failing to identify malware) and type 1 (false 

positives, wrong label benign software as malware) 

errors. This accuracy is essential to resist malicious 

attacks and for system smooth running. 

Finally, the robustness of AUC of 89.07 at such 

extensive and complex (e.g., 1.2M NTS) data sizes 

shows MPERGA’s robustness. Due to the rapidly 

growing quantity of data that these environments 

process, and also the need of us to carry out reliable 

malware detection to maintain operability, this is 

extremely important. 

Also, a high AUC means that the model is more 

trusted to automate decisions to a much greater extent, 

leading to less manual intervention and, as a result, 

more speed in cyber security operations. It is especially 

relevant in real time systems where accuracy of 

detection and the speed of response are equally 

important. 

Overall, these AUC values observed for these 

models particularly the superior performance of 

MPERGA indicates its effectiveness and reliability in real 

time malware detection. Its capability to keep high AUC 

values across different sample sizes shows it’s ready for 

use in numerous and intricate cyber security 

environments, making it a great boon in guarding digital 

infrastructures facing developing cyber threats. 

Similarly, the Specificity levels in figure 8 are observed 

to be similarly. 

We assess the specificity of MPERGA for NTS 

and it performs strongly in specificity. As an example, 

such as for a segmental recalled 70k NTS MPERGA’s 

specificity of 84.07% is higher than Malp Miner (77.03%), 

SPPNet (81.31%), and GCDroid (78.10%). This 

suggests how efficient MPERGA is in detecting 

legitimate software and conclude from that, the way to 

lower the amount of interruptions due to false alarms is. 

MPERGA has a high level of specificity for the 

dataset size, as the dataset size increases. For example, 

with 170k NTS its specificity is a good 93.83%, better 

than its competitors. The high specificity implies that 
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MPERGA should pick up well on malware even as the 

dataset gets more complicated. 

High specificity has significant impact in real 

time applications. In such sectors as healthcare 

systems, financial services, industrial control systems, a 

high specificity rate is crucial, as small errors lead to 

large business disruptions due to false positives. It 

makes sure the cyber security measures don’t 

mistakenly paint legitimate, necessary software as 

suspect and act, resulting in unnecessary, maybe even 

harmful, disruption. 

Additionally, as this scale up process transpires, 

at 1.2M NTS, MPERGA is able to maintain specificity of 

90.81%, indicating that it can properly scale up. This is 

particularly important in large and complex digital 

systems with abundant legitimate software and systems, 

but high cost of false positives. 

Additionally, to keep user confidence in cyber 

security systems, a high specificity rate is a prerequisite. 

Frequent false positives can also mean your users start 

to ignore security alerts and stop paying attention to true 

dangers. 

In summary, the observed performance of these 

models, especially the high performance of MPERGA, 

suggest that MPERGA is effective in real time malware 

detection scenarios. MPERGA can achieve high 

specificity rate at several sample size ranges, indicating 

the stability and efficiency of MPERGA to differentiate 

malware from a non-malware. With this in mind, 

MPERGA is an important tool for anyone who wants to 

be sure that digital infrastructures are secure and 

continue to function smoothly, while limiting the 

disruption resulting from false positives. 

 

5. Conclusion and Future Scopes 

This study research has resulted in 

development and validation of a novel approach — the 

Malware Prediction Model MPERGA — an innovative 

approach that combined Auto Encoders and Attention 

Mechanisms into a Recurrent Graph Relationship 

Analysis framework. Results of a comprehensive 

evaluation using Malware Memory Analysis and the 

Kharon Malware Database show MPERGA to 

outperform existing models, such as Malp Miner, 

SPPNet, and GCDroid. For the above-mentioned 

metrics such as precision, accuracy, recall, delay and 

AUC, the model has done so in a remarkable fashion. 

Existing demographic data shows an 8.3% 

increase in the ability of MPERGA to do so 

programmatically over other forms of demographic data 

and a further 8.5% increase over simple statistical 

methods. Through a superior recall rate compared to all 

other classifiers in identifying true instances of malware, 

the model is clearly effective for preventing system 

infringements at higher sample sizes. Additionally, AUC 

values are greater and detection delay is smaller for 

MPERGA compared to malware detection methods in 

the literature, highlighting its efficiency and reliability in 

the classification of malware and non malware 

instances, and its ability to minimize disruptions 

introduced by false positives. 

MPERGA is indeed having great impacts on 

cyber security. As an effective way for protecting digital 

infrastructures, it will be able to adapt to the evolving 

threats as well as to its ability to handle extensive and 

complex datasets. Thanks to the high accuracy and fast 

computational speed, the model can robustly defend 

against malware attacks, and play a significant role in 

guarding sensitive systems in financial, medical and 

national security related sectors. 

 

6. Future Scope 

The enhancements and applications of 

MPERGA are many and look ahead. Future research 

can focus on the following areas: 

 Integration with IoT and Edge Computing: 

With the rapid growth in the number of Internet 

of Things (IoT) devices, the adaptation of 

MPERGA targeted for efficient operation in edge 

computing environments may offer robust 

security solutions with such immense networks. 

 Adaptation to Zero-Day Malware: Improving 

the model's ability to predict zero day attacks, 

which are one of the biggest problems in 

cybersecurity, would be a big improvement. 

 Real-Time Application in Diverse 

Environments: Moving MPERGA out into the 

real world with actual corporate networks, but 

also critical infrastructure, and seeing how it 

works allows us to learn and further refine the 

project. 

 Ethical AI Considerations: The more powerful 

AI models get, the more crucial will be ensuring 

that they are being used in an ethical way — i.e. 

with regards to privacy and data security. 

 Cross-Domain Adaptability: Other domains, 

such as fraud detection or intrusion detection 

systems, could be investigated to see if 

MPERGA is applicative. 

Finally, MPERGA is a giant step forward for 

cybersecurity. The ability to detect malware in an 

accurate and efficient manner has huge promise for 

improving digital security. With future developments and 

applications of such model, this model can provide not 

only an advancement of the field of cybersecurity but 

also enable a safe network which is more and more 

interconnected and based upon digital technologies. 
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