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Abstract: Accurate assessment and classification of acute pain are critical for optimal therapy, particularly in 

healthcare environments in which early intervention might prevent chronic pain development. Conventional pain 

recognition approaches mostly depend on the self-reported information, which can be subjective by psychological 

factors and communication problems, especially in nonverbal organizations. Recent advancements in technology 

have provided new opportunities for pain recognition using facial images and biomedical signals such as 

electromyography (EMG). In this work, we proposed an ensemble learning-based model that combines both face 

images and EMG data for acute pain classification, and the CNN ShuffleNet V2 approach is used for feature 

extraction. Our objective for pain classification is to correct classification for pain intensity levels from T0 to T4 (no 

pain vs. pain). We proposed ensemble learning-based techniques like TabNet, LightGBM, Hidden Markov, and 

Gaussian Process for acute pain classification. We used many kinds of approaches to improve prediction 

performance, which created a comprehensive framework for pain classification and insights into the physiological 

and psychological responses to acute pain. Our analysis of results also indicates that the ensemble approach 

definitely surpasses previous approaches whereby TabNet model accuracy came to be 97.8%. Also, this model has 

great F1 score of 97.6%, as well as recall at 97.3%, while on kappa score, it goes up to 92.4%, indicating great 

dependability. These results present a good optimism that our ensemble learning technique could change the face 

of pain assessment procedures and therefore patient care in acute pain treatment. 
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1. Introduction 

Acute pain is a clinically complex condition that 

may severely affect an individual's function and quality 

of life [1]. Specifically in healthcare, where immediate 

treatments can potentially prevent chronic pain, accurate 

identification and characterization of acute pain are 

essential for effective management and therapy [2]. 

Traditional methods of pain assessment usually involve 

self-reported measures, which are not objective and 

depend on many factors, including the mental state of a 

person and communication problems, especially in 

nonverbal societies [3]. Advances in technology have led 

to new ways of assessing pain based on face imaging 

and physiological information [4-6]. Thereby, facial 

expressions may have proved strong indicators of 

emotional states-in this case, pain, while statistics allow 

for the analysis of it via machine learning approaches [7]. 

Additional data on muscle activity pertinent to pain 

responses can also be taken from physiological signals 

like EMG [8, 9]. 

The present research illustrates the potential of 

our proposed approach to transform pain evaluation 

processes in health care institutions by offering an 

extensive performance evaluation and comparison of it 

versus current methods. The final objective of this 

research is to further enhance care for patients and 

acute pain treatment results by integrating the increasing 

amount of information on automatic pain recognition 

systems. The following sections discuss relevant studies 

and present our results of our performance study, and 

compare how different ensemble learning methods 

classify acute pain. 

The method for pain recognition, which uses 

facial expression images and ensemble learning, was 

proposed by [4]. This method uses ShuffleNet V2 for 

feature extraction and class activation map techniques. 

Base methods include CatBoost and XGBoost, with a 

support vector machine model as a meta-model. 

Another method is the three-stream hybrid deep neural 

network (EDLM), which was proposed by [5] and which 

extracts the features from the facial images with pain 
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classification. The VGGFace and principal component 

analysis are used in this EDLM model to extract features 

from the Multimodal Intensity Pain database. The 

models have also outperformed the competitors in the 

multi-level pain detection database through achieving 

better accuracy of the feature classification. 

 

2. Related work 

In such a study that utilized ensemble 

approaches to classify pain intensity, a trend was shown 

for how ensemble learning methods can be improved 

further to enhance classification evaluation, by 

integrating the most effective features from several 

iterations. A series of investigations have also looked at 

the integration of facial and physiological data, pointing 

toward a need for multimodal approaches to accurately 

assess pain intensity. In the study by [10], for example, 

EDA data has been used to classify the level of pain 

using a hybrid model that combines deep learning and 

traditional machine learning approaches. This is in line 

with the objectives of our study, which aims to enhance 

the accuracy of acute pain detection using the 

combination of both face images and EMG signals. 

This section seems at significant research that 

has improved techniques to evaluate pain, with a focus 

on using physiological signals such as 

electromyography (EMG) and facial expressions [11]. 

Much study has been given in recent years to the 

classification of acute pain using facial images and 

physiological signals, especially since the advent of 

advanced machine learning techniques. Based on 

relevant research that has informed our understanding 

and the enhancement of pain assessment methods, the 

following section discusses the employment of 

physiological signals, namely, electromyography (EMG), 

and facial expressions. Indeed, work by [12], for 

example, demonstrated effectively how deep feature 

extraction in images of the face can be applied for 

automatic pain classification, meaning that such models 

can aid doctors in classifying pain indirectly. According 

to their findings, the integration of multiple physiological 

signals may improve the efficiency of pain classification 

techniques, especially where patients may not be able to 

communicate their level of pain appropriately. Most 

studies done in this area have relied greatly on the Biovid 

Part A dataset, which has allowed for an enormous 

amount of data to be used to train pain classification 

models. The dataset is appropriate for the development 

of machine learning algorithms for pain assessment 

because it includes different physiological signals along 

with the corresponding pain levels [13]. In addition to 

facial emotions, physiological signals, particularly 

electromyography, or EMG have been used to provide 

more information for the classification of pain. A number 

of studies has shown that the integration of EMG signals 

with facial expressions could improve the accuracy of 

pain recognition [14]. 

As indicated by the study in which pain intensity 

classifications through ensemble methods were used, 

the advancements in the ensemble learning method 

indicate that there may be an opportunity for 

improvement of assessment classification by combining 

various models. Again, further study showed a 

multimodal combination between physiological data and 

facial data to enable efficient pain evaluation. The study 

of [10] utilized a hybrid model that includes deep learning 

and conventional approaches to machine learning in an 

attempt to classify the intensity of pain using EDA 

signals. That is compatible with our research direction of 

improving acute pain detection by using face images and 

EMG signals. 

Our research expands the mentioned 

foundations by using the Biovid Part A dataset for very 

detailed performance evaluation and comparison with an 

ensemble learning-based approach in order to predict 

the classification of acute pain. Lots of studies that 

examined the combination of facial and physiological 

data point at the significance of multimodal approaches 

toward precise evaluation of the condition called pain. 

For example, the study applied deep learning and 

traditional approaches of machine learning to create a 

hybrid model that quantifies the degree of pain based on 

electrodermal activity (EDA) biomarkers [15]. That 

proves the technique; classification performance of pain 

may be improved by combining multiple biomedical 

indicators with facial emotions [16]. 

In conclusion, the present state of research 

underlines the importance of combining physiological 

signals and facial images to recognize pain, with 

methods of ensemble learning providing an opportunity 

for improved efficacy. In order to improve on these 

frameworks, our research introduces an ensemble 

learning-based approach to predict acute pain 

classification using the Biovid Part A dataset for 

extensive performance analysis and comparison 

 

3. Methodology 

3.1 Data Sets 

The most significant dataset used in the study is 

the BioVid Heat Pain Database, Part A. The supervisor 

of the BioVid investigation squad, Philipp Werner, 

allowed the access to the data. The study involved four 

distinct stages of independently validated thermal pain 

stimulation, labeled as T1, T2, T3, and T4. Pain levels 

were categorized into five classes, with 20 participants 

representing every class, resultant in an overall of 8,600 

samples recorded for each signal. Each pain intensity 

measurement spanned a duration of 5.5 seconds [17]. 

 

3.2 Feature Extraction 

In this work, we construct a convolutional 

network based framework using five CNN layers and 
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batch normalization [18-21]. We utilize the CNN 

ShuffleNet V2 algorithm's parameters for learning the 

structure. The Figure 1 illustrates the systematic feature 

extraction method. ShuffleNet's concentration on 

variable minimization and computational efficiency sets 

it apart from localized patterns. Bunch convolution 

connects every set of input streams simultaneously [22]. 

The following minimizes the total amount of elements 

and streamlines the estimation procedure. To add or 

aggregate a map of feature elements, we implemented 

element-wise total or aggregate feature fusion of face 

images and EMG biomedical signal [23]. The 

inexpensive approach integrates information obtained 

from multiple perspectives. To demonstrate the 

significant movements, we employ a class activation 

map. Following that, the extraction of features model 

incorporates a fully linked layer and a reshape function 

to generate a two-dimensional array [24]. 

In this investigation, we use an incremental 

generalization approach that integrates estimates from 

numerous base models to improve the accuracy of 

predictions. We use a variety of classifiers as a meta-

model and produce results that incorporate predictions 

from the base models. Train the CatBoost and XGBoost 

algorithms to generate a prediction. The predicted 

results are utilized as an attribute for training the various 

classifiers [25, 26]. The various classifiers train by 

identifying the significant variations in the features and 

separating them into different categories. The proposed 

pain intensity level recognition is provided in Figure 2. 

CatBoost, compared to existing gradient 

boosting algorithms, does not require prior treatment, 

encoding, or one-hot encoding for working with data that 

is categorical. Therefore, categorical information might 

be analyzed using minimum computing power. CatBoost 

offers excellent processing speed with parallelism, which 

makes it perfect for large datasets and elegant 

algorithms. The method employs sequential enhancing 

as well as stochastic variations to reduce overfitting and 

promote applicability. CatBoost tackles missing data 

without relying on approximation [27]. Throughout 

training, heedless trees manage the values that are 

absent. CatBoost trains quicker and more efficiently than 

other gradient-boosting structures. We utilize the 

Hyperband optimization approach to improve the 

CatBoost algorithm's effectiveness in recognizing pain. 

XGBoost's objective functionality includes regularization 

approaches such as Least Absolute Shrinkage and 

Selection Operator (LASSO) [28]. It eliminates overfitting 

as well as improves model adaptability. XGBoost's 

development allows for efficient analysis of face images 

and EMG signals across several processors [29].  

In XGBoost, builders can create unique 

objectives and functions for explicit difficulties. This 

capability allows researchers to utilize hyperband 

optimization to increase the XGBoost model's efficiency. 

To handle missing data during the training stage, 

XGBoost was created. It can automatically manage 

missing values based on data. We apply regularization 

during tree construction to manage complexity, 

improving the model’s applicability [30].The integrated 

cross-validation in XGBoost reduces overfitting and 

helps monitor model performance during training [31]. 

Figure 1. Proposed feature extraction method from 

face and physiological signal (EMG) 

 

3.3 Classification Model 

The proposed pain intensity level recognition 

using different classifier shown in Figure 2.  
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Figure 2. Proposed framework for pain level classification using various classifier 

 

3.3.1 TabNet Model 

The primary objective is to use facial and 

physiological signals to distinguish between pain (B0) 

and its absence (P1, P2, P3, P4). We create four binary 

classifications task for this. We extract features from face 

and EMG signal has been combined. Based on fused 

feature we use decision tree (DT) classifiers for our 

analysis [31]. The incorporation of deep neural networks 

into DTs is known as TabNet [32]. The TabNet design 

includes many transformer blocks to learn pertinent 

characteristics and a Batch Normalization layer to filter 

the raw input [33]. Additionally, it uses learnable masks 

to select which feature to evaluate at each decision step 

and a sequential attention mechanism. Because the 

learning capacity is allocated to the most salient 

features, this trait facilitates effective learning. Based on 

their performance, we may finally choose the optimal set 

of signals, features, and models [34-36]. 

 

3.3.2 Light Gradient Boosting Machine 

(LightGBM) Model 

LightGBM is a type of gradient-boosting method 

used for predictive modelling in supervised learning 

tasks, such as regression, classification, and ranking. 

.Microsoft created the open-source library known as 

LightGBM. The way LightGBM constructs trees sets it 

apart from more conventional gradient boosting methods 

like XGBoost and GBM [37]. It reduces learning time and 

memory usage by employing a gradient-based one-

sided sampling technique, selecting only the most 

crucial data points for tree construction. LightGBM keeps 

adding decision trees to the ensemble iteratively until an 

interruption requirement is satisfied, like achieving the 

lowest improvement in the validation set error or the 

maximum number of trees [38].LightGBM was used for 

this investigation because of its strong predictive ability. 

It constructs trees that progressively fix the prior trees 

prediction mistakes as an ensemble approach. Its 

support for parallel computing and its fast convergence 

time during training with very big datasets give it an 

additional computational edge over ensemble algorithms 

like random forest [39]. LightGBM has been shown to 

have the potential to outperform CART and SVM by at 

least 16 times and outperform the extreme gradient 

boost by 26 times [40]. 

 

3.3.3 Hidden Markov Model 

The hidden Markov model (HMM) is a type of 

probabilistic model that represents time series data as a 

sequence of K states. Each state is linked to a unique 

probability distribution, often called an observation 

model, which belongs to a specific family of probability 

distributions (such as Gaussian). Using a data-driven 

approach, HMM inference estimates the state variables, 

the transition probability matrix (i.e., the probabilities of 

switching between states or remaining in the same 

state), initial state probabilities (i.e., the likelihood of 

each state at the beginning of a sequence), and the 

probability of each state being active at each time point 

[41-43]. Here, two HMM variants with distinct 

observation models the HMM-MAR and the HMM-TDE 

were investigated [44].  

We changed the following in our analyses:  

• The relevant model hyperparameters for the 

HMMTDE include the lag structure, defined by 

the width 𝐿 and the inter-lag steps 𝑆, as well as 

the order 𝑃 for the HMM-MAR. 

• The Dirichlet distribution concentration 

parameter, 2 here as d, parameterizes the prior 

probability of staying in the similar state as 

opposite to changing states. 

• K is the number of states. 
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3.3.4  Gaussian Process Classification Model 

A Gaussian Process (GP) is the extension of the 

multidimensional Gaussian distribution to infinite 

numerous dimensions, where each finite number has a 

multimodal Gaussian distribution [45]. A GP’s mean and 

covariance functions may be used to characterize it in 

the same way that a Gaussian distribution's mean vector 

and covariance matrix does. GP frameworks may be 

seen from two viewpoints; “weight space” and “function 

space”. GPR is a Bayesian extension of ordinary linear 

regression, where estimates are derived from a weight 

vector and Gaussian noise. In Gaussian Process 

mathematical models, a zero mean Gaussian Process 

prior is applied to the weights, and the posterior 

distribution is determined using Bayes' theorem [46]. 

Gaussian Process Classification (GPC) builds 

upon Gaussian Process Regression (GPR) by applying 

a Gaussian Process prior to an unconstrained latent 

function and then computing its posterior distribution. In 

this context, instead of observing the function directly, 

we employ a sigmoidal response function to map it to the 

unit interval. This study utilizes the cumulative Gaussian 

density Φ (𝑥), commonly referred to as probit likelihood. 

The response function converts an unbounded 

regression problem into a classification task with outputs 

limited to the unit interval, ensuring an appropriate 

probabilistic interpretation [47]. Developing GPC 

projections involves two steps. To make a probabilistic 

forecast, we first compute the dormant variable’s 

distribution at the check point, followed by its 

anticipation. Class probabilities are calculated by 

integrating the latent function across the full distribution 

at the test data point, as opposed to SVM's point 

predictions [48]. 

 

3.4 Evaluation metrics for pain 

classification models 

Assessing the effectiveness of a pain classification 

model involves utilizing a range of metrics to assess its 

effectiveness. Here's a breakdown of key metrics, 

including their formulas. 

 

3.4.1 Accuracy 

Accuracy evaluates the overall correctness of 

the model’s predictions and can be defined as:  

Accuracy = 
TP + TN

TP + FP + TN + FN
   (1) 

A high accuracy score suggests that the model 

is correctly predicting a significant number of instances 

[49].  

 

3.4.2 Precision 

Precision determines the amount of presented 

outcomes that are extremely beneficial. Precision 

express as: 

Precision = 
TP 

TP + FP 
    (2) 

The high level of precision indicate that in the 

event the algorithm predicts a favourable situation, there 

is an excellent possibility that its prediction is accurate 

[50]. 

 

3.4.3 Recall 

Recall is an indicator of the algorithm's capability 

to accurately recognize all true positive instances. It 

shows the number of actual instances which have been 

accurately predicted. Recall may be expressed as 

follows: 

Recall = 
TP 

TP + FN 
     (3) 

Excellent recall show that the algorithm 

accurately recognizes a large number of positive 

instances. This is especially important whenever the 

implications of false negatives are significant [49]. 

 

3.4.4 F1-Score 

The F1-score is the harmonics mean of 

accuracy and recall, giving a balanced assessment, and 

it is particularly useful for distorted datasets. The F1 

score can be expressed as: 

F1-Score = 2∗
(Precision × Recall)

(Precision + Recall)
   (4) 

A high F1-score redirects an effective balance 

between precision and recall [49, 50]. 

 

3.4.5  Kappa 

Kappa evaluates the level of consistency among 

an algorithm's predictions and actual labels, considering 

into account the possibility of chance matching. Kappa 

can be expressed as follows: 

Kappa = 
Observed Accuracy−Expected Accuracy

1− Expected Accuracy
   (5) 

It is important that you choose the most 

appropriate metric(s) depending on the specific intends 

and characteristics associated with your pain 

classification problem. As an example, whenever 

missing a pain assessment actually undesirable, 

emphasize recollection. If avoiding unnecessary 

treatments due to incorrect results is critical, prioritise 

accuracy. The F1-score achieves an appropriate 

proportion provided both are important [51]. 

 

4. Results and Discussion  

Table 1 summarizes the results of a five-fold 

cross-validation analysis on Part A of the Biovid dataset, 

which used the Leave-One-Subject-Out cross-validation 

strategy. The classification job relies on the TabNet 

algorithm for separating between T0 and T4. Table 1 
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shows the performance characteristics for each of the 

five folds. The algorithm's prediction accuracy varies 

from 94.2% to 97.8% across folds, having Fold 5 

providing the highest accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Graphical representation of performance metrics for classification task T0 vs. T4 using the TabNet model 

 

Table 1. A five-fold cross-validation analysis performed on Biovid (Part A) dataset for the classification task 

T0 vs. T4 using the TabNet algorithm 

Folds Accuracy % Precision % Recall % F1-score % Kappa % 

1 94.2 94.5 93.3 94.1 89.1 

2 95.6 95.5 94.5 94.6 89.6 

3 95.8 96.6 95.6 95.8 90.8 

4 96.7 97.8 96.8 97.1 91.9 

5 97.8 97.3 97.3 97.6 92.4 

Table 2. A five-fold cross-validation analysis has been performed on the BVDB (Part A) in a LOSO for the 
classification task T0 vs. T4 using the LightGBM model. 

Folds Accuracy % Precision % Recall % F1-score % Kappa % 

1 92.5 91.8 92.2 92.2 87.2 

2 93.4 92.3 93.5 92.8 87.6 

3 94.5 93.8 94.3 92.9 88.8 

4 95.2 94.8 94.9 93.2 89.6 

5 95.8 95.3 95.1 93.8 90.3 
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Figure 4. Graphical representation of performance metrics for classification task T0 vs. T4 using the LightGBM 

model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graphical representation of performance metrics for classification task T0 vs. T4 using the Hidden 

Markov Model 
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Table 3. A five-fold cross-validation analysis has been performed on the BVDB (Part A) in a LOSO for 
the classification task T0 vs. T4 using the Hidden Markov Model 

Folds Accuracy % Precision % Recall % F1-score % 

1 90.8 90.6 91.4 92.2 

2 91.8 91.8 92.1 92.8 

3 92.6 93.1 92.7 92.9 

4 93.7 93.6 93.6 93.2 

5 94.1 94.2 94.2 93.8 

 

Table 4. A five-fold cross-validation analysis has been performed on the BVDB (Part A) in a LOSO for the 
classification task T0 vs. T4 using the Gaussian Process classification model 

Folds Accuracy % Precision % Recall % F1-score % 

1 90.8 90.6 91.4 92.2 

2 91.8 91.8 92.1 92.8 

3 92.6 93.1 92.7 92.9 

4 93.7 93.6 93.6 93.2 

5 94.1 94.2 94.2 93.8 

 

 

Precision differs from 94.5% to 97.8%, with Fold 4 

providing the most accurate results. Recall, or 

sensitivity, is the proportion of correctly detected positive 

cases among all real positives and runs from 93.3% to 

97.3%, with Fold 5 scoring the highest. The F1-score, 

indicating the harmonic mean of accuracy and recall, is 

a balanced statistic for both and runs from 94.1% to 

97.6%, with Fold 5 again having the highest result. 

Overall, Table 1 demonstrates consistently high 

performance across all five folds for the TabNet model 

on the T0 vs. T4 classification task. Fold 5 generally 

exhibits the best performance across all reported 

metrics. Graphical representation of performance 

metrics for classification task T0 vs. T4 using the TabNet 

model presented in Figure 3. 

Table 2 displays the performance of the 

LightGBM model on this specific task, with accuracy 

scores across folds ranging from around 92.5% to 

95.8%. This variation highlights differences in 

performance based on the subject excluded for testing. 

Precision and recall evaluation provided a measure of 

the framework's capacity to correctly recognize T4 tasks 

while simultaneously reducing false positives and false 

negatives. The F1 score optimizes accuracy and recall, 

and the Kappa statistic measures the algorithm's 

performance.  

To gain a better understanding, compare these 

results with different approaches (Tables 1, 3, and 4). 

This comparison demonstrates each algorithm's 

advantages and disadvantages for the particular task at 

issue. Figure 4 shows the performance metrics for the 

T0 vs. T4 classification evaluated with the LightGBM 

model. 

 

Table 5. Integration performance compared to previous work on the BVDB (Part A) in a LOSO cross-
validation setup for classification tasks T0 and T4 

Classification Model Accuracy % Precision % Recall % F1-score %  Kappa % 

Susam et al. [49] 97.1 95.8 95.7 95.7 90.1 

Semwal and Londhe [50] 94.8 94.6 94.5 94.5 91.2 

Bargshady et al. [51] 95.6 96.1 95.8 95.9 89.7 

El Morabit et al. [52] 94.1 94.5 94.3 94.4 90.9 

Proposed Method (TabNet) 97.8 97.3 97.3 97.6 92.4 
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Figure 6. Graphical representation of performance metrics for classification task T0 vs. T4 using the Gaussian 

Process classification model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of existing methods using graphical representation of performance metrics for pain 

classification task T0 vs. T4 
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Table 3 presents the performance results of the 

HMM across various folds, with accuracy ranging from 

about 90.8% to 94.1%, reflecting some variability based 

on the subject excluded for testing. Precision, recall, and 

F1-score provides an additional analysis of the 

algorithm's performance in classification, emphasis 

different aspects of accuracy. The Kappa statistic further 

evaluates the model’s effectiveness beyond chance 

agreement. 

A comparison of these results with those in 

Tables 1, 2, and 4, which employ different models, 

provides a more thorough evaluation and helps identify 

the most effective model for this particular task. Figure 5 

offers a graphical representation of performance metrics 

for the T0 vs. T4 classification task using the Hidden 

Markov Model. The results in Table 4 show the Gaussian 

Process model's performance across the 5 folds. The 

accuracy ranges from about 90.5% to 92.8%, indicating 

some variability depending on the subject held out for 

testing. Precision, recall, and F1-score provide a a more 

detailed perspective on the model's performance. Kappa 

assesses performance beyond chance agreement. 

Comparing these results with Tables 1, 2, and 3 (using 

different models) helps determine the most suitable 

model for this task. Graphical representation of 

performance metrics for classification task T0 vs. T4 

using the Gaussian Process model's shown in Figure 6. 

Table 5 displays the combined performance of 

multiple models of classification for tasks T0 and T4 

(pain vs. no pain) on the Biovid Part A dataset in a 

Leave-One-Subject-Out (LOSO) cross-validation 

situation. The recommended method has the following 

metrics: accuracy (97.8%), precision (97.3%), recall 

(97.3%), F1-score (97.6%), and Kappa (92.4%). 

Compared with previous approaches, the recommended 

TabNet method performs significantly with a 97.1% 

accuracy. Method [49] perform well but falls short in 

terms of precision, recall, F1-score, and Kappa. 

Although they performed well models such as [50, 51] 

failed to satisfy the standards of the recommended 

approach. Comparison of pain classification using 

proposed method with existing method shown in Figure 

7 with bar graph representation proposed method 

performs well. 

 

5. Conclusions 

The present study provides a distinctive 

approach to enhance acute pain classification 

performance via the integration of face images and 

electromyography (EMG) information. Through using 

ensemble learning, which incorporates numerous 

algorithms in order to boost overall performance, this 

approach not only improves predicted accuracy but also 

offers understanding on the physiological and emotional 

elements of acute pain. In the proposed method, we 

applied a feature extraction strategy based on a 

convolutional neural network (CNN) architecture, 

namely the ShuffleNet V2 algorithm, which provides 

computational simplicity while also extracting meaningful 

information from images of faces and EMG data. This 

approach optimizes using five CNN layers and batch 

normalization, providing a faster and more effective 

estimated value. 

To accurately investigate pain signals, 

information from both modalities is integrated using an 

element-wise fusion approach. The proposed approach, 

operated by TabNet, showed outstanding results, with 

an accuracy of 97.8%, exceeding preceding models' 

97.1%. It also outperformed in other performance 

criteria, including accuracy (97.3%), recall (97.3%), F1-

score (97.6%), and a Kappa score of 92.4, showing its 

reliability and stability. The results presented show the 

significant method in automated pain recognition 

systems, with the potential to improve clinical diagnosis 

and patient care. This framework will be a very effective 

solution for pain assessment due to its integrated feature 

extraction algorithms and remarkable pain classification 

accuracy. 
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