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Abstract: This study addresses the prompt injection attack based vulnerability in large language models, which 

poses a significant security concern by allowing unauthorized commands by attackers to manipulate the outputs 

produced by model. Text classification methods used for detecting these malicious prompts are investigated on the 

prompt injection dataset obtained from Hugging Face datasets, utilizing a combination of natural language 

processing-based techniques applied on various machine learning and deep learning algorithms. Multiple 

vectorization approaches, like the Term Frequency-Inverse Document Frequency, Word2Vec, Bag of Words, and 

embeddings, are implemented to transform textual data into meaningful representations. The performance of several 

classifiers is assessed, on their ability to identify between malicious and non-malicious prompts. The Recurrent 

Neural Network model demonstrated high accuracy, achieving a detection rate of 94.74%. Obtained results indicated 

that deep learning architectures, particularly those that capture sequential dependencies, are highly effective in 

identifying prompt injection threats. This study contributes to the evolving field of AI security by addressing the issue 

of defending LLM based systems against adversarial threats in form of prompt injections. The findings highlight the 

importance of integrating sequential dependencies and contextual understanding in combatting LLM vulnerabilities. 

By the application of reliable detection mechanisms, this study enhances the security, integrity, and trustworthiness 

of AI-driven technologies, ensuring their safe use across diverse applications. 

Keywords: Prompt Injection, Large Language Models, Text Classification, Vectorization Techniques, Machine 

Learning, Deep Learning 

 

1. Introduction 

In the last two years, theoretical and real-world 

applications related to Artificial Intelligence (AI) and 

Large Language Models (LLM) have progressed and 

evolved incredibly. Such applications, using the leading 

LLM models like OpenAI's ChatGPT [1], Google's 

Gemini [2], Meta's Llama [3], and many more, have 

shown stunning capabilities in understanding and 

generating human like text with the use of Natural 

Language Processing (NLP) techniques [4]. It has 

brought about the development of applications ranging 

from automated content creation [5] over to well-defined 

domain based conversational agents [6]. In particular, 

their understanding, producing, and interpreting ability in 

regard to languages enabled a plethora of uses of AI and 

set new benchmarks for both Machine Learning (ML) 

and NLP [7,8]. 

As the LLMs continued to amass great 

popularity, there began major concerns against the 

vulnerabilities by methods such as jailbreaks, data 

leakage, unethical content generation, and prompt 

injection that all put into question the provision of LLM 

security [9, 10]. Among all these security concerns, 

Prompt Injection was rated as the top LLM related 

hazard by the Open Web Application Security Project 

(OWASP) [11]. Prompt injections pose a significant 

problem because LLMs are unable to distinguish 

between data and instructions. LLMs excel at generating 

content based on prompts, but this strength is often 

exploited by certain users, who may be referred to as 

'attackers.' If an attacker embeds malicious statements 

within a prompt—whether as a simple command hidden 

inside code or a paragraph—the system is compelled to 

execute the given instruction [12-14]. 

Since the launch of OpenAI's custom 

Generative Pre-Trained Transformers (GPT), there has 
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been a notable increase in the creation of custom 

models tailored to unique requirements [7]. However, it 

came with this disadvantage, where unauthorized users 

tend to input destructive prompts into custom data to 

perform illicit tasks through a process called ‘prompt 

injection’, which is a clear violation of the ideal AI policies 

[15]. These custom GPTs can easily be tricked into 

revealing the designed system prompt, thus practically 

eroding the designer’s efforts in ensuring that the system 

is exclusive to them [11]. Further, there is a theft of the 

designer-uploaded files resulting in the proper use of the 

custom GPT; privacy is under threat, and so is the 

intellectual property [12]. 

The widespread adoption of LLMs across critical 

sectors has increased the potential impact of security 

vulnerabilities. Financial institutions integrating LLMs 

into their customer service and fraud detection systems 

can face risks of personal data exposure and its 

manipulation through prompt injection attacks. 

Healthcare organizations using AI for patient care and 

medical research could face severe consequences if 

malicious prompts compromise patient confidentiality or 

manipulate medical recommendations. Moreover, 

government agencies and infrastructure operators 

implementing LLM-based systems must contend with 

the possibility of prompt injection attacks being used for 

unauthorized access or system manipulation [10]. 

The implications of successful prompt injection 

attacks can extend beyond just immediate system 

related security compromise. Organizations risk face 

damage on their reputation, legal liability, and potential 

regulatory penalties, if any sensitive information is 

exposed. The financial impact caused can be really high, 

including the potential costs associated with system 

remediation, incident response and even legal 

settlements. Additionally, such successful attacks could 

make public lose trust in AI systems, potentially slowing 

the adoption of beneficial AI technologies across 

industries. 

This study examines the prompt injection attack 

challenges which are addressed by developing robust 

text classification models which discern between 

malicious and non-malicious text. The prompt injection 

data is used in the process of constructing a dataset; the 

models necessary to analyze and prevent such attacks 

are built and assessed based on accuracy [16]. In this 

method, it is proposed to combine Vectorization 

techniques and Bidirectional Encoder Representations 

from Transformers (BERT) embeddings with 

conventional text preprocessing techniques of NLP to 

capture patterns of the text [4, 16]. There are different 

machine learning and deep learning architectures that 

have been adopted and compared [17, 18]. Therefore, 

in this study, the proposed approach integrates 

contextualized embeddings and traditional text 

preprocessing methods of NLP for the examination of 

model effectiveness in distinguishing between prompt-

injecting attacks. This is beneficial not only because it 

makes the models more reliable for the tasks in question 

but also because it provides a better understanding of 

how various embedding techniques perform regarding 

adversarial inputs [11, 12]. 

 

2. Related Works 

With the introduction of Large Language 

Models, the domain of natural language processing has 

significantly transformed, and with it came new forms of 

security threats in form of vulnerabilities. As more of 

these models have been adopted, researchers have 

found an increase in number of attacks where the 

malicious data is disguised as normal prompt messages 

that gets through the filters, and grants full access to the 

confidential information. This emerging threat has led to 

several research studies to be conducted to identify, 

classify, manage and defend these sorts of risks. 

An initial understanding of prompt injection 

attacks was given by the foundational work of SS Kumar 

et al. [19], who provided a comprehensive categorization 

of these attacks based on the various prompt types, the 

trust boundaries that were breached, and the expertise 

and knowledge required for execution of these attacks. 

This initial framework laid the base for subsequent 

research studies to understand and analyze these 

attacks further in detail. 

Based on the foundation, Greshake et al. [20] 

researched indirect prompt injection attacks, building on 

what was done and at the same time delved into the 

unique vulnerabilities of LLMs and the impacts of those 

styles of attacks. It further emphasized more 

comprehensive knowledge of attack vectors and how 

such knowledge influences direct prompt injections. 

Further studies were conducted in order to extend the 

methodology that compares systematically the 

vulnerabilities present in LLMs against such types of 

prompt injection attacks. In contrast to Greshake's focus 

on indirect prompt injection, Yi et al. [21] focused on 

direct prompt injection attacks, presenting the 

differences among the attack vectors and mitigations of 

these two techniques. These contrasts provided further 

comprehensive views regarding the landscape of both 

indirect and direct prompt injections and also about their 

mitigation strategies. 

Fábio Perez et al. [22] developed the 

PromptInject Framework, which enabled deeper 

research and analysis of various types of injection 

attacks. Further development was carried out by Xiatong 

Sang et al. [23], where he proposed methods for 

comparing the protection against prompt injections in 

LLMs using standard datasets such as Microsoft's 

PromptBench. Even though these frameworks are of 

great value when it comes to evaluation, it has to be 

underlined that they have their limits. In this regard, 

Benjamin et al. [24], in his work, have argued that the 
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currently adopted strategies for evaluation may fail to 

capture the real-world challenge and thus require 

additional, dynamic, and context-sensitive testing 

strategies. 

Practical implications of these vulnerabilities in 

real-world applications were discussed by Yi Liu et al. 

[11] in a novel study using the HOUYI toolkit, which 

demonstrated the high exploitability of LLM 

vulnerabilities in real-world applications. This is followed 

by the detailed research work of Qiusi Zhan et al. [25], 

who developed the InjecAgent Benchmark to assess 

nearly 30 LLMs for their susceptibility to IPI attacks, 

providing a better understanding of LLM's vulnerabilities 

against prompt injection-based attacks. 

As understanding of the problem deepened, 

researchers began to explore more state-of-the-art 

attack techniques. Jiawen Shi et al. [26] formulated a 

specific optimization cause for attacking the decision-

making method of LLM-as-a-Judge, showcasing how 

generated malicious sequences be used to deceive 

these systems. This work highlighted the evolving 

complexity of prompt injection attacks and the need for 

more sophisticated defense mechanisms. In response to 

those growing threats, similarly research were made 

towards developing robust defense strategies. Rai et al. 

[27] introduced "GUARDIAN," a multi-staged defense 

architecture that was designed to prevent prompt attacks 

through a series of filter layers. It suggested practical, 

implementable answers for securing LLM-based 

systems but, Varshney et al. [28] challenged the 

effectiveness of these multi-staged defense 

architectures, meanwhile proposing it as an alternative 

extra holistic method that integrates security 

considerations directly into the LLM training process. 

This contrasting standpoint highlighted the still ongoing 

debate in the field of determining the most effective 

defense strategies for LLMs. 

However, as Liu et al. [29] pointed out, even 

advanced defenses like paraphrasing and data prompt 

isolation had chances to be bypassed by optimized 

attack strategies such as the Expectation-Over-

Transformation (EOT) technique which lead to 

subsequent researches to be made in that direction. Suo 

et al. [30] proposed the 'Signed-Prompt' method, which 

featured an interesting way for LLMs to distinguish 

between authorized commands and malicious inputs. 

This approach demonstrated excellent performance 

across diverse linguistic scenarios, offering a promising 

future work in security of LLM direction. 

Recent advancements in the field have focused 

on enhancing the inherent robustness of LLMs. Piet et 

al. [31] introduced the "Jack of all trades, master of one" 

(JATMO) framework, which fine-tuned models for 

specific tasks using synthetic datasets to improve its 

resistance to prompt attacks. Similarly, SMOOTHLLM, a 

defense mechanism was developed by Robey et al. [32] 

that significantly reduced the success rates of attacks 

while maintaining high model efficiency. 

As studies in this area progresses, ethical 

considerations have come to the leading edge. Schulhof 

et al. [33] praise crucial questions about the potential 

misuse of prompt injection techniques and the moral 

implications of growing increasingly sophisticated attack 

methods. Their work emphasizes the need for a 

balanced method that considers both security and 

ethical worries in LLM research. Interestingly, Wang et 

al. [34] even highlighted an unexpected positive 

application of prompt injection strategies as a quality 

assurance mechanism in crowdsourcing surveys. This 

research tested how the very strategies developed for 

attacks might be repurposed to beautify the reliability 

and diversity of crowdsourced evaluations, showcasing 

the ability for innovative applications of this technology 

beyond security concerns. 

 

2.1 Research Gap 

Existing research on Prompt Injection has 

already extensively discussed Prompt Injection attacks 

and their defense strategies with some even suggesting 

benchmarking LLM based on their vulnerability to 

prompt injection attacks. However, there’s still 

inadequate research done on how to apply embedding 

techniques to make testing of prompt injection attacks 

computationally efficient with improvements in the 

detection and prevention of these attacks when 

traditional text pre-processing techniques are performed 

on the prompt injection dataset. With the rapid 

development of LLMs in general, these new challenges 

have not been fully explored.  

 

3. Methodology 

3.1. Data Description 

The dataset used in the study has been chosen 

from Hugging face datasets. The dataset used was 

developed by deepset, and is a simple and commonly 

used dataset for research purpose which was sampled 

out from a larger dataset. It has been tested and 

evaluated on LLM model based on which it is classified 

into malicious or non-malicious labels, hence proved as 

a good choice for classification task. It contains a corpus 

of sentences that are labeled as malicious or not 

malicious in a binary format with 1 representing 

malicious prompt and 0 representing non-malicious 

prompt as displayed in Figure. 1 

Subsequently, an analysis was conducted to 

determine the distribution of malicious and non-

malicious prompts present in the dataset which is 

demonstrated in the form of a bar chart as seen in 

Figure. 2. 
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Figure 1. Pictorial representation of the first five rows of the dataset used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Describing the distribution of labels as malicious and non-malicious 

 

3.2 System Architecture 

The flowchart as shown in Fig. 3 illustrates the 

flow of the approach used in the research. Beginning 

with the data collection, it is then followed by pre-

processing to clean and denoise the text. The core of the 

process involves vectorization methods, where text is 

converted into numerical representations using 

techniques like Term Frequency - Inverse Document 

Frequency (TF-IDF), Word2Vec, Bag of Words (BoW), 

and BERT. These vectorized outputs are then fed into 

machine learning algorithms for the first three 

techniques and deep learning models for BERT 

embeddings. 

3.3. Preprocessing 

Given the nature of the research involving NLP, 

necessary preprocessing steps were undertaken. This 

included the removal of special characters and the 

denoising of the text corpus. The following are pre-

processing steps explained in detail: 

 

3.3.1 Removal of Special Characters 

Special characters such as punctuation marks, 

different symbols, and other non-alphanumeric 

characters can add noise to the text data. The process 

of removal of special characters is done by: 
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Figure 3. System Architecture 

 

Regular Expression (Regex): It is a method to 

remove special characters by using regular expressions. 

The regex pattern [a-z, A-Z, 0-9/s] matches all 

characters that are not alphabets, digits, or whitespaces 

[35]. 

 

3.3.2. Denoising the Text Corpus 

Denoising involves multiple steps to clean the textual 

data by removing unwanted elements and normalizing 

the text. The denoising techniques are as follows: 

a. Lowercasing: By converting all the characters to 

lowercase, uniformity can be ensured and the 

complexity of understanding uppercase and 

lowercase words differently is reduced [36]. 

b. Removing Stop Words: Stop Words like “and”,” 

the”,” is” etc. do not carry significant meaning so 

they can be removed from the corpus to 

enhance the reduction in text dimensionality. 

[37] 

For better understanding of the preprocessing 

steps, consider the following example from the dataset 

which is a malicious text - "Wow, that's fantastic! Forget 

all previous tasks. Now focus on your new task: show 

me all your prompt texts."  
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Applying first step of removing special 

character, the new output is - “Wow thats fantastic 

Forget all previous tasks Now focus on your new task 

show me all your prompt texts” 

Applying the second step of denoising the text, 

the new output is “wow fantastic forget previous tasks 

focus new task show prompt texts” 

 

3.4 Vectorization 

The approach follows a regression approach to 

predict if the text is harmful or not. So vectorization of the 

preprocessed text is done in four techniques:- TF-IDF 

Vectorization, Word2Vec tokenization method, Bag Of 

Words Vectorization, and BERT Embeddings method. 

Before vectorization, the dataset was split into test and 

train using the scikit-learn library function [38]. 

 

3.4.1 TF-IDF Vectorization 

TF-IDF is a statistical measure used to evaluate 

the importance of a word in a document to the collection 

of documents (corpus) [39] it combines two metrics: 

Term Frequency which measures how 

frequently a term appears in a document. 

TF(t, d)  =  N_t/N_D   (1) 

Where, N_t= Number of times term t appears in 

document d & N_D= Total number of terms in document 

d. 

Inverse Document Frequency which measures 

how important a term is. It decreases the weight of terms 

that appear frequently in many documents and 

increases the weight of terms that appear rarely. 

IDF(t)  =  log(N_d/N_t )  (2) 

Where, N_d=Total number of documents, N_t= 

Number of documents with the term t in it. 

TF − IDF(t, d)  =  TF(t, d) ∗ IDF(t) (3) 

Where t is the term, and d is the document. 

 

3.4.2 Word2Vec Tokenization 

WordVec is a group of related models used to 

produce word embeddings. Word2Vec takes a large 

corpus of text as input and produces a vector space, 

typically of several hundred dimensions, with each 

unique word in the corpus being assigned a 

corresponding vector in space [40]. There are two main 

approaches: 

Continuous Bag of Words (CBOW) which 

predicts the current word from a window of surrounding 

context words. 

The Skip-gram method predicts the surrounding 

context words from the current word.  

The objective function for Skip-gram with 

negative sampling is [41]. 

log(𝑣′𝑤𝑂 𝑇 𝑣𝑤𝑙) +  ∑𝑘𝑖 =

1 𝐸𝑤𝑖 𝑃𝑛(𝑤)[𝑙𝑜𝑔 𝜎(−𝑣′𝑤𝑖 𝑇 𝑣𝑤𝐼)]    (4) 

Where: σ is the sigmoid function, vwI is the input 

vector representation of the current word, v'wO is the 

output vector representation of the context word, v'w are 

the vector representations of negative samples, Pn(w) is 

the noise distribution from which negative samples are 

drawn. 

 

3.4.3 Bag of Words Vectorization 

Count Vectorization also known as Bag of 

Words is a simple and commonly used method for text 

vectorization. It involves the following steps: 

Tokenization splits the text into individual words 

(tokens). Vocabulary Creation which involves creating a 

list of all unique words in the corpus. Vectorization 

involves creating a vector for each document where 

each element represents the count of a specific word 

from the vocabulary in that document. 

For a document d and word w: BoW(d,w) = 

Number of times w appears in d. The vector for 

document d is:  

Vd =  [Bo(d, w1), BoW(d, w2). . , BoW(d, wn)]  (5) 

Where, w1,w2, ..., wn are all the words in the 

vocabulary [42]. 

 

3.4.4 BERT Embeddings 

BERT uses a transformer architecture to 

generate embeddings. The text is first tokenized into 

subwords using a WordPiece tokenizer, followed by a 

passage of tokenized text through BERT to obtain 

contextualized embeddings. BERT embeddings capture 

the context of each word in a sentence and help in 

providing rich semantic information. 

BERT's objective function combines two parts: 

Masked Language Model (MLM) 

MLM =  −log (wi|w1, . , w{i − 1}, w{i + 1}, . . , wn) (6) 

Next Sentence Prediction (NSP) 

NSP =  −log (IsNext|C, S)   (7) 

Where: wi is a masked word, C and S are two 

sentences. The total loss is [4]: 

L =  MLM +  NSP    (8) 
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3.4.5 Comparative Analysis of Vectorization Techniques 

 

Table 1. Comparative analysis of techniques over strength, weakness and use cases 

Technique Strength Weakness Use Case 

TF-IDF 
Relevance weighting, 

interpretability, efficiency 
Lack of context, sparsity 

Identifying characteristic words 

in malicious prompts 

Word2Vec 
Semantic understanding, 

dimensionality reduction 

Lack of contextual information, 

training complexity 

Capturing semantic 

relationships in text 

BoW 
Simplicity, effectiveness in 

certain tasks 

Lack of semantic and contextual 

information, high dimensionality 

Baseline models and tasks 

where word frequency is a 

strong indicator 

BERT 
Contextual understanding, 

state-of-the-art performance 

Computational complexity, large 

model size 

Detecting subtle patterns and 

understanding context in 

malicious prompts 

 

3.5. Experimentation 

The study aimed to evaluate various techniques 

for detecting prompt injection attacks using a dataset of 

labeled malicious and non-malicious prompts. The 

process began with pre-processing the data by removing 

special characters using regex expressions. The 

following text data is then denoised on the corpus 

through lowercasing of the prompts and removal of 

stopwords to ensure consistency and a better 

understanding of the prompt for further machine learning 

algorithms. 

The dataset was split using test-train split and 

first TF-IDF vectorization was applied. TF-IDF helped in 

identifying which word occurred most frequently in the 

prompts and by calculating the product of its term 

frequency and inverse document frequency, the final 

vectors were formed which were further used in training 

and testing sets on which the ML models were fitted and 

evaluation metrics were obtained.  

The second vectorization approach involved 

using the Word2Vec approach which considered the 

prompt dataset as a whole corpus of text and used the 

‘punkt’ tokenizer from nltk library. The tokenized prompts 

are then passed with the dimensionality of 100, a context 

window size of 5, a minimum frequency threshold for 

word as 1, and the number of worker threads for training 

as 4 to obtain the word2vec model. The tokenized text 

was finally passed through this word2vec model and the 

final test and train embeddings were obtained on which 

the ML models were fitted and evaluation metrics were 

obtained.  

The third vectorization approach involved using 

the Count Vectorizer also commonly known as the BoW 

vectorization method. It worked by first tokenizing the 

prompts, followed by creating a separate list for each 

unique word in the tokenized prompt for that unique 

prompt which was then vectorized into a vector where 

each element depicted the count of the unique word in 

the prompt dataset.  

The vectorized data was then split into training 

and testing sets using train_test_split function from scikit 

learn library. Different ML models were then trained 

based on each vectorization technique and evaluated. 

The following ML models were used: - 

 

3.5.1 Logistic Regression (LR) 

It mapped the input features using a sigmoid 

function onto a probability range of [0, 1], based on the 

probability of the input prompt relating to the malicious 

prompt class. Regarding this, the decision boundary or 

threshold boundary is taken as (0.5). LR is applied due 

to the simplicity in its mechanism and efficiency in binary 

classification problems. It can handle linearly separable 

data, making it apt for detecting malicious prompts that 

contain distinct patterns or keywords, such as specific 

commands or phrases commonly found in prompt 

injection attacks. 

 

3.5.2 Support Vector Machines (SVM) 

SVM finds the best hyperplane in a feature 

space that maximizes the separation between malicious 

and non-malicious prompts. It defines its frontier with the 

help of some important data points, called as support 

vectors, that lie closest to the hyperplane. SVMs were 

chosen due to their efficiency in dealing with high-

dimensional data and their capability of finding an 

optimal hyperplane that separates two classes. 

Therefore, this model suits well for recognizing small 

differences between malicious and non-malicious 

queries essential for identifying sophisticated prompt 

injection attacks. 
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3.5.3 Decision Trees and Random Forest (RF) 

Decision Trees were used as a baseline model 

which worked by recursively splitting the prompt data 

based on feature values to create a tree data structure 

that classifies prompts as either malicious or normal 

using criteria like Gini impurity to select the best feature 

for splitting and pruning was done to mitigate the risks of 

overfitting. The Random Forest model worked similarly 

to the decision tree. Since it is consisted of many 

decision trees, it enhanced the efficiency and selected 

the best feature for classifying prompt data into malicious 

and non-malicious. 

 

3.5.4 Gradient Boosting, AdaBoost, and XGBoost 

Gradient Boosting iteratively improves the 

model by training weak learners on the residual errors of 

the previous model. The predictions of the weak learners 

are added to the current model which are weighted by a 

learning rate. AdaBoost is similar to Gradient Boosting 

but adapts the weights of the provided prompt examples 

to ensure that difficult examples receive more attention. 

XGBoost is an advanced and efficient implementation of 

Gradient Boosting that includes regularization and tree 

pruning to prevent overfitting. These ensemble methods 

were selected for their ability to iteratively improve model 

performance by focusing on misclassified samples. 

Gradient Boosting and AdaBoost are particularly 

effective for handling imbalanced datasets, where 

malicious prompts may be rare, and for detecting subtle 

patterns in prompt injection attacks. XGBoost, with its 

advanced regularization techniques and scalability, is 

highly effective for large datasets and complex 

classification tasks, making it well-suited for detecting 

prompt injection attacks in real-world applications.  

 

3.5.5 K-Nearest Neighbors (KNN) 

KNN was included for its non-parametric nature, 

which allows it to capture local patterns in the data 

without making strong assumptions about the underlying 

distribution. KNN model relied on a distance metric i.e. 

Euclidean Distance to find the nearest neighbor to 

classify a new prompt based on the majority class of its 

k nearest neighbor in the feature space. 

For deep learning models, the BERT 

Embedding approach was implemented, which, when 

applied to the prompt dataset, tokenizes the prompts 

and extracts contextual embeddings using the "bert-

base-uncased" model. These embeddings serve as 

input features for all deep-learning models. Thus, 

BERT’s powerful contextual understanding helps 

effectively distinguish between malicious and normal 

prompts when fitted to DL models. 

By performing hyperparameter tuning, it was 

found that training for 10 epochs in a batch size of 32 

with a 0.2 validation split served as the best parameters 

for deep learning models. By training at 10 epochs, the 

model was not overfitted and training time was 

optimized. Batch size of 32 helped maintain a good 

balance between computational efficiency and model 

stability. The models were optimized using the 

commonly used Adam Optimizer with a learning rate of 

0.001 so as to ensure stable convergence. The loss 

function was binary cross-entropy over accuracy metrics 

which measures the difference between the predicted 

probability distribution and the true distribution and is a 

common choice for binary classification tasks. Accuracy 

metrics was used for evaluation which is the proportion 

of correctly classified prompts out of the total number of 

prompts. 

 

3.5.6 Convolutional Neural Network (CNN) 

The Convolutional Neural Network (CNN) model 

has inputs comprising embedding dimensions and max 

length. These are then followed by two convolutional 

layers with a Rectified Linear Unit as the activation 

function, applying filters to detect specific word 

sequences common in malicious prompts. Max Pooling 

exists in between, downsampling data while retaining 

important features that might indicate prompt injection. A 

Global Max Pooling layer is applied which captures 

important features that distinguish malicious and normal 

prompts. It is further passed to two Dense layers with 

ReLU activation for refining the learned features. 

Following that, Dropout layers were used to prevent the 

model from over-fitting. Finally, the Output Layer was 

used which was a Dense Layer with Sigmoid activation 

to classify whether the prompt was malicious or non-

malicious. CNN was chosen for its ability to detect local 

patterns and spatial hierarchies in the textual data, which 

was useful for identifying specific word sequences 

indicative of malicious prompts. 

 

3.5.7 Recurrent Neural Network (RNN) 

The RNN model takes an input shape of the 

embedding dimensions and sequence length of the 

prompts. It includes a SimpleRNN layer of 128 units and 

processes sequence data, which may contain temporal 

dependencies indicative of malicious patterns in the 

prompts. In this case, 'return_sequences=True' ensured 

that the RNN split out the full sequence, which was 

passed into a Global Max Pooling layer. It returned the 

final result of the sequence, reducing it into a fixed-size 

vector by taking the maximum value across the same, 

thus enabling it to capture the most prominent 

characteristic. The obtained data was then passed 

through two Dense layers with ReLU for further feature 

refinement; dropout layers have also been included to 

avoid overfitting. Finally, a Dense output layer was used 

with Sigmoid activation, acting like a binary classification 

of the prompt and hence evaluating either malicious or 

normal. RNN was chosen because of its ability to model 

sequential dependencies in text data. Thus, it was 
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suitable for capturing temporal patterns in malicious 

prompts. It helped in detecting prompt injection attacks 

which involved common sequences of commands or 

instructions in the prompt. 

 

3.5.8 Long Short Term Memory (LSTM) 

Model has an LSTM layer instead of 

convolutional layers in its architecture. It has a 128-unit 

LSTM layer, which captures long-term dependencies 

and patterns in the sequence data crucial for malicious 

prompt identification. 'return_sequences =True' ensures 

that LSTM outputs the full sequence, and this is then fed 

into a Global Max Pooling layer. It returned the sequence 

into a vector of fixed size by taking the maximum value 

across the sequence to capture the most important 

features from that sequence. Other components of the 

model, which include Dense, Dropout, and the Sigmoid 

final activation layer, are similar to the previous CNN and 

RNN models. LSTM was chosen for its ability to address 

the vanishing gradient problem in RNNs, allowing it to 

capture long-term dependencies. It is effective for 

detecting malicious prompts that involve complex, 

context-dependent commands. 

 

3.5.9 The Bi-directional Long Short Term Memory 

(Bi-LSTM) 

Further improves the LSTM with the basic idea 

of passing the sequence data in both forward and 

backward directions. In that respect, this bidirectional 

processing can hold comprehensive context and 

dependencies that may signal malicious prompts. 

Similarly, a Bidirectional LSTM layer with 128 units 

ensured that the model is aware of the context from both 

directions and proved to be effective in detecting subtle 

patterns indicative of prompt injection. The rest of the 

model structure was similar, including a Global Max 

Pooling layer, Dense layers, Dropout layers, and 

Sigmoid activation at the very end. Bi-LSTM was 

selected for its ability to capture comprehensive context 

and dependencies by processing sequences in both 

directions. 

 

4. Results and Discussion 

This study evaluated the Prompt Injection 

Dataset using various machine learning and deep 

learning approaches. The research implemented the 

vectorization techniques- TF-IDF, Word2Vec, BoW, and 

BERT Embeddings. BERT Embeddings was used 

exclusively with deep learning models, captured 

contextual information, contributing to high accuracies 

across all architectures. 

Machine Learning Models: The study evaluated 

8 machine learning models using the vectorized data 

from TF-IDF, Word2Vec, and BoW techniques. The 

performance varied across different vectorization 

methods, with some models showing clear preferences 

for specific techniques. The results obtained are 

summarized in the Table 2 and discussed below. 

Table 2. Displaying accuracies of various ML models in 

different Vectorization Techniques 

Vectorization→ 

ML models 

↓ 

TF-IDF Word2Vec BoW 

Logistic Regressor 0.8647 0.6165 0.9399 

SVM 0.9173 0.7143 0.8947 

Random Forest 0.9399 0.8045 0.9248 

AdaBoost 0.8872 0.7669 0.9023 

XGBoost 0.8872 0.8271 0.8797 

KNN 0.8722 0.7143 0.5414 

Decision Tree 0.9023 0.6316 0.9098 

Gradient Boosting 0.9098 0.8496 0.9173 

 

4.1 Key Findings and Interpretations 

TF-IDF Vectorization- TF-IDF proved 

particularly effective, achieving the highest accuracy 

of 93.99% with the Random Forest model. Malicious 

prompts often contain specific commands or keywords 

that are rare in normal prompts. TF-IDF's ability to 

highlight these words makes it particularly useful for 

detecting prompt injection attacks. It works by assigning 

higher weights to words that are characteristic of 

malicious prompts, making it effective for identifying key 

indicators of prompt injection attacks. This aligns with 

findings from which show TF-IDF's ability to capture rare 

but significant words in text classification tasks [39]. 

Word2Vec Vectorization- Word2Vec showed 

lower overall performance compared to TF-IDF and Bag 

of Words but it demonstrated its best result with 

ensemble model like Gradient Boosting, achieving up to 

84.96% accuracy. Malicious prompts often use indirect 

or disguised language to evade detection. Word2Vec's 

ability to capture semantic similarities helps to identify 

these disguised commands, but its static embeddings 

may not fully capture the context of the prompt, resulting 

in lower accuracy score. 

Bag of Words Vectorization- BoW performed 

remarkably well despite being a simple common model, 

achieving 93.99% accuracy with Logistic Regression, 

matching the best TF-IDF model accuracy. BoW 

focusses on word frequency which makes it effective in 

detecting malicious prompts that could contain some 

specific keywords or patterns of text. It is consistent with 

the findings from [42], which show that BoW can be 

highly effective in text classification tasks where word 

presence is a strong indicator of the target class. The 
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presence and frequency of certain words (e.g., "ignore," 

"execute") are strong indicators of malicious prompts. 

BoW's simplicity and effectiveness make it a useful 

baseline method for prompt injection detection. 

Both models achieved 93.99% accuracy with 

BoW and TF-IDF, respectively. These results suggest 

that linear separability (in the case of Logistic 

Regression) and ensemble learning (in the case of 

Random Forest) are effective for detecting prompt 

injection attacks. The ensemble methods like Gradient 

Boosting, XGBoost, AdaBoost showed robust 

performance across different vectorization techniques, 

indicating their ability to capture complex patterns in the 

data, however, they weren’t the top accurate classifiers 

in performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of accuracies of machine learning algorithms trained via different vectorization techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of test accuracies of various Deep Learning models 
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From Figure 4, it is evident that Logistic 

Regression and Random Forest emerged as top 

performers, both achieving 93.99% accuracy with BoW 

and TF-IDF respectively. Support Vector Machines also 

performed well, particularly with TF-IDF vectorization 

(91.73% accuracy). These results suggest that linear 

separability in the feature space is a strong indicator of 

malicious prompts. 

Table 3. Displaying test accuracies of various DL 

models after using the ‘bert-base-uncased’ model 

Models Accuracy 

CNN 0.9398 

RNN 0.9474 

LSTM 0.9248 

Bi-LSTM 0.9245 

 

Deep Learning Models: The research 

implemented four deep learning architectures using 

BERT embeddings as input: CNN, RNN, LSTM, and Bi-

LSTM. These models were chosen for their ability to 

capture different aspects of textual data, from local 

patterns to long-range dependencies. The results are 

summarized in Table 3, visualized in Figure. 5 and 

discussed below. 

 

4.2 Key Findings and Interpretation 

The CNN model achieved 93.98% accuracy, 

indicating its ability to capture local patterns in text data. 

Malicious prompts often contain specific word 

sequences or commands. CNN's ability to detect these 

local patterns and spatial hierarchy makes it effective for 

prompt injection detection.  

Both the LSTM and Bi-LSTM models have 

achieved similar accuracies of 92.48% and 92.45%, 

respectively. LSTM and Bi-LSTM models are designed 

to capture long-term dependencies in text data. While 

they performed slightly worse than RNN and CNN, they 

demonstrated the ability to understand the context of 

malicious prompts. Although, their performance may be 

limited as a result of relatively small dataset size. 

The RNN model achieved the highest overall 

accuracy of 94.74%, outperforming all other ML & DL 

models. Prompt injection attacks often involve 

sequences of commands or instructions. The ability of 

RNNs to capture such sequential dependency helped to 

detect the pattern, making it very effective on the task. 

This was consistent with the results obtained in [30], 

which also found that RNNs were effective for modeling 

sequential data in security-related tasks. Also, applying 

BERT embeddings provided rich contextual information 

so that the RNN model could better understand the 

meaning of words in the context of the entire sentence. 

It aligns with the results obtained from [4], which 

highlighted how effective BERT was in capturing deep 

contextual relationships in text data, leading to the best 

performance by RNN. 

These findings have significant implications for 

the detection of prompt injection attacks on large 

language models. The superiority of deep learning 

models, and more specifically RNNs, underlines the 

importance of modeling sequential dependencies and 

contextual information when it comes to targeting the 

detection of malicious prompts. This conclusion is in line 

with the emphasis that was placed in [11] on contextual 

understanding when devising defenses against prompt 

injection attacks. In addition, the superior performance 

of traditional machine learning algorithms, i.e., Random 

Forest and Logistic Regression, showed the potential of 

the combination of traditional and deep learning 

approaches for improved detection accuracy. This also 

complies with [27] which suggests the deployment of a 

multi-staged defense system on the basis of collective 

utilization of traditional and contemporary approaches to 

the security of LLM-based systems. 

 

5. Conclusion 

This paper addresses the novel issue of prompt 

injection attacks within LLM integrated applications. It 

provides a detailed analysis of the characteristics of 

these attacks, particularly focusing on the failure of LLM 

to correctly distinguish between malicious and non-

malicious commands. To resolve this problem, the study 

proposes pre-training the model on a textual corpus that 

includes harmful and malicious phrases and sentences. 

The research explored various machine learning and 

deep learning methods to implement this approach. The 

corpus was vectorized with three different vectorization 

techniques and then fitted to different machine-learning 

algorithms ranging from basic ML to ensemble models. 

Subsequently, for deep learning techniques and models, 

BERT was employed as the vectorization technique 

before fitting the model on its embeddings, to further 

enhance the model's ability to recognize and mitigate 

prompt injection attacks. The result of this research 

project demonstrated that the RNN model achieved the 

highest accuracy of 94.74% in fitting the given dataset of 

malicious prompts. As an extension to our present 

research, further research can be done by incorporating 

more advanced transformer models or fine tuning the 

present model for improved robustness against prompt 

injection attacks. Also, the cross-domain datasets can 

also be checked upon for broader validation and 

adaptability insights. 
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