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Abstract: The increasing sophistication of adversarial attacks in machine learning systems requires advanced 

detection and mitigation strategies. Existing models fail to identify such attacks in a timely and accurate manner, 

mainly because of their inability to adapt to various conditions and lack of predictive capabilities. To address these 

shortcomings, this paper introduces an innovative pre-emption model based on the capabilities of Deep Dyna Q 

Learning combined with VARMAx Operations. The Deep Dyna Q Learning framework is very efficient for finding the 

salient performance indicators accuracy, confidence, training loss, prediction performance, anomaly occurrence, and 

explainability performance. An advanced GridCAM++ process tracks these performance indicators while providing 

insights regarding their interconnection, thus a basis for formulating a well-performing model process of prediction 

for adversarial attacks. Further enhancing the model's resilience, VARMAx Operations are employed to integrate 

both endogenous variables (derived from the system's performance metrics) and exogenous variables (representing 

noise or external factors), providing a comprehensive view for preempting adversarial attacks. This combination 

enhances predictive accuracy and also allows for preempting possible security breaches. The model uses GAN-

based sample generation along with a digital twin framework that significantly increases classification performance 

by properly cross-comparing and eliminating attack vectors for different scenarios. The empirical tests performed on 

real-time networks show the superiority of this model over the existing methods. Notably, it achieved an increase of 

8.5% precision in adversarial attack pre-emption, accuracy improved up to 8.3%, higher recall rate by up to 7.5%, 

reduced delay by 4.9%, and AUC rose by 10.4%, and specificity also enhanced by 9.4% in process. 

Keywords: Deep Dyna Q Learning, VARMAx Operations, Adversarial Attack Pre-emption, GAN-Based Sample 

Generation, Real-Time Network Security, Scenarios 

 

1. Introduction 

Advanced adversarial attacks challenge the 

integrity of machine learning systems with changing 

cyber security landscapes. These are characterized by 

manipulating or exploiting models. Such attacks reveal 

the need for stronger and adaptive defense 

mechanisms. [1] The traditional approaches, though 

somewhat effective, have not been able to withstand 

more sophisticated and adaptive attack strategies. This 

has opened a space in the defenses of ML models, 

wherein models are developed that not only detect 

attacks but can also counter such attacks at high 

accuracy and efficiency levels. [2, 3] Deep Dyna Q 

Learning is one such interesting step coming under this 

category, which is one form of reinforcement learning 

particularly extracting and analyzing very complex 

patterns within large data. This strategy allows this 

model to appropriately discover many of the most 

relevant important metrics such as accuracy, levels of 

confidence, and anomaly events. These are the key 

metrics relevant to the fine-grained behaviors of ML 

systems under adversarial pressure. [4] This framework, 

with explainability integrated into advanced tools like 

GridCAM++, provides insight into decision-making 

processes of the models-an area overlooked in 

traditional systems. [5] Internal system dynamics apart, 

the adversarial attacks themselves are a form of 

complexity which is also an external variable or noise 

factor. In this context, the integration of VARMAx 

Operations into the model is strategically enhanced [6]. 

The model can now allow for the use of both 

exogenous and endogenous variables, thus giving an 

all-rounded view about the vulnerability of the system 

due to attacks because of VARMAx [7]. 

This research proposes a complete defense 

system to protect machine learning systems from enemy 

attacks. It uses Deep Dyna-Q Learning, VARMAx 

Operations, and GAN-based sample creation. Deep 
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Dyna-Q Learning, a form of reinforcement learning, 

enables the system to adjust and identify potential 

attacks. It does this by looking at complex patterns and 

key security signs. The model also uses VARMAx 

Operations to tell normal system behavior from enemy 

interference [8]. It does this through internal and external 

factors. GAN-based sample creation makes the model 

stronger by making fake enemy attacks for learning. This 

complete system works better than old methods in 

enemy defense. It's more accurate, precise, and quick to 

respond. The model also makes decisions clearer 

through tools like GridCAM++. This makes it good for 

real-time use in cybersecurity [9, 10]. 

 

2. Review of Existing Models for 

Adversarial Attack Analysis 

The literature about adversarial attacks and 

defenses has a rich as well as rich variety, in which the 

theme includes machine learning as well as cyber 

security. In this sense, this paper review encompasses 

different works that combine in order to increase the 

insight in the establishment as well as in the promotion 

of detection strategies of adversarial attacks. Guesmi et 

al. [1] present an in-depth survey on physical adversarial 

attacks for camera-based smart systems, categorizing 

and developing different applications and challenges. 

This work serves as a guideline to understanding the 

landscape of physical attacks that might occur in smart 

systems. Huang and Li [2] introduces a mitigation 

method for machine learning-based network attack 

detection in power systems, based on vulnerability 

analysis. Their work in dealing with adversarial attacks 

on critical infrastructure is most relevant. Feng et al. [3] 

discuss using Meta-GAN to achieve robust and 

generalized physical adversarial attacks in the 

methodology for adversarial attack. Zhao et al. [4] 

present a black-box adversarial attack approach against 

graph neural networks, which is relevant to network 

security. He et al. [5] developed the notion of Type-I 

Generative Adversarial Attack that further widened the 

scope for the understanding of adversarial attacks on 

generative models. He et al. [5] present a study on point 

cloud adversarial perturbation generation, which is 

challenging in 3D model security.  

Y. Wang et al. [6] provide a survey on 

adversarial attacks and defenses in machine learning-

powered communication systems, giving a broad view of 

the field. This investigation by Kazmi et al. [7] analyzes 

adversarial attacks on aerial imagery, revealing aspects 

of vulnerabilities found in autonomous systems and 

remote sensing technologies. In this context, Y. Shi et al. 

[8] have analyzed a query-efficient black-box adversarial 

attack technique, with importance given to attacks in a 

constricted environment, while C. Shi et al. [9] introduced 

universal object-level adversarial attacks in hyper 

spectral image classification-a broader scope attack 

surface in the remote sensing technology. Jiang et al. 

[10] explain the physical black-box adversarial attacks 

through transformation and contribute to the 

understanding of the methodologies involved in physical 

attacks. Mo et al. [11] describe how adversarial attacks 

affect deep reinforcement learning systems and expose 

their vulnerabilities. Sun et al. [12] survey adversarial 

attacks and defenses on graph data, which are critical 

for secure models based on graph structures.  

Nguyen Vu et al. [13] discuss the defense of 

spoofing countermeasures against adversarial attacks 

with an emphasis on the robustness of psychoacoustic 

models C. Wan et al. [14] proposed an average gradient-

based adversarial attack method that helps understand 

black-box attacks and their transferability. Teryak et al. 

[15] focus on the two-sided defense mechanism of 

cyber-attacks and adversarial machine learning on 

smart grids; here, strong defensive strategies have an 

importance of being in the backbone of such 

infrastructures. Qin et al. [16] examine adversarial 

example detection via feature fusion for second-round 

attacks against the emerging tactics. Gipiškis et al. [17] 

analyze the vulnerability of interpretable semantic 

segmentation against adversarial attacks in cyber-

physical systems; this is an important application area 

since the explainability of AI is nowadays on the 

increase. Chen and Ma [18] discuss adversarial attacks 

for robust neural image compression, taking into account 

fine-tuning of models.  

Yan et al. [19] discussed a survey on adversarial 

attacks and defense against malware classification as a 

critical approach to cyber security. Pi et al. [20] present 

transfer-based natural eye makeup attack on face 

recognition to give a perspective over the creative 

methods of adversarial techniques. Li et al. [21] 

investigated intra-class universal adversarial attacks on 

deep learning-based modulation classifiers, important to 

wireless security, and last but not the least, Yuan et al. 

[22] made an entry on semantic-aware adversarial 

training for reliable deep hashing retrieval to enhance 

adversarial training techniques. Collectively, these 

studies provide an overview of the state of adversarial 

attacks and the accompanying defensive 

countermeasures, ranging from several methods across 

a host of applications to the implications for different 

domains.  

Xu and Zhai [23] proposed a universal 

adversarial example generation method, called DCVAE-

adv, relevant for both white and black box attacks.  

Chen et al. [24] discusses adversarial attacks on 

neural network-based industrial soft sensors, providing 

new attack techniques, such as the Mirror Output Attack 

and Translation Mirror Output Attack, with industrial 

applicability. These form a rich body of work on which 

the present research builds and aims to address the 

gaps and challenges identified in these studies for 

different scenarios. 



Vol 7 Iss 2 Year 2025  Chetan Patil & Mohd Zuber /2025 

Int. Res. J. Multidiscip. Technovation, 7(2) (2025) 60-73 | 62 

3. Proposed Design of the proposed 

Temporal and Dynamic Behavior Analysis 

Model in Android Malware using LSTM and 

Attention Mechanisms 

In order to avoid the difficulties associated with 

existing techniques that lack sufficient efficiency & 

possess high complexity, the present model integrates 

Deep Dyna Q Learning, VARMAx Operations, and GAN-

based techniques with other major modules. Figure 1: 

As illustrated in the diagram, Deep Dyna Q Learning, 

forms the backbone of the model that proficiently steers 

through the complex machine learning jungle to 

effectively recognize & understand important key 

performance indicators developed through the process 

of classification [11]. 

 

 

Figure 1. Model Architecture for the Proposed 

Adversarial Attack Pre-Emption Process 

This dynamic learning is supplemented with 

VARMAx Operations that closely monitor the 

deterministic variables that constitute the performance of 

the system, along with exogenous variables that have 

unaccounted parameters and levels of noise [12]. 

At the same time, sample generation relies on GAN-

based simulation for creating realistic yet synthetic data 

samples. The process is almost like a hall of mirrors 

where each reflection offers new insights into potential 

adversarial attacks. These elements, combined, 

complete a strong and resilient framework for different 

use cases. To perform these tasks, the Deep Dyna Q 

Learning framework is bridged with the GridCAM++ 

process. Consider the update rule for Q-learning, which 

is one of the fundamental operations of this framework 

and is represented via equation 1. [13] 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 1 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 + 1

, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] …(1) 

Where, α is the learning rate, γ is the discount 

factor, st and st+1 are the current and next state, at is 

the current action, and rt+1 is the reward at the next 

timestamp sets. This recursive equation continuously 

refines the Q Values that represent utility for the process 

resulting from taking action a in state s. Furthermore, 

involving deep learning enhances this paradigm more 

with its capability to evolve the standard Q-learning into 

more sophisticated form to suit various applications. The 

deep neural network, parameterized by weights θ 

approximates the Q-function, via equation 2, [14] 

𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) … (2) 

Where s′ and a′ represent the next state and 

actions. The neural network updates its weights θ 

through backpropagation. Minimizing loss function 

represented via equation 3, 

𝐿(𝜃) = 𝐸 [(𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) − 𝑄(𝑠, 𝑎; 𝜃))
2

] … (3) 

Beyond Deep Dyna Q predictive capabilities, 

GridCAM++ processes increase the explanatory levels 

of this model. Gradient-based visualization method is 

used here to visualize where the most significant input 

data influences are the predictions. The core idea of this 

process is mathematically represented Via equation 4: 

[15] 

𝑀 = 𝑅𝑒𝐿𝑈 (
𝜕𝑦𝑐

𝜕𝐴𝑘
) … (4) 

Where, M is the class-discriminative localization 

map for class c, yc is the score for class c, and Ak is the 

feature map of the convolutional layers. The ReLU 

function ensures that only features with a positive 

influence on the class of interest are visualized by the 

process. With Deep Dyna Q Learning and GridCAM++, 

the synergy enables the development of a high-level 

system that can predict in addition to giving an 

understanding of 'why' it has developed that particular 

prediction. 

This is important, especially when 

understanding why a model is doing one thing is as 

important as actually doing it for different scenarios. The 

GridCAM++ process further localizes the localization 

maps using the derivative of the score for the target class 
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c concerning the activations of a convolutional layer k via 

equation 5, [12, 13, 14] 

𝐿(𝐺𝑟𝑖𝑑𝐶𝐴𝑀 + +, 𝑐) = ∑ 𝑤𝑘𝑐 ⋅ 𝐴𝑘

𝑘

… (5) 

Where, wkc is the weight corresponding to class 

c for feature map k sets.  

This procedure captures the true essence of 

GridCAM++; it captures all the influential regions in the 

input data concerning the target class. Next comes the 

VARMAx process that supports to pre-empt adversarial 

attacks. The soul of VARMAx process originates from 

Vector Auto regression model (VAR). VAR is one basic 

equation used for modeling the interdependencies as 

well as the time-lagged relations between many time 

series.  

Via equation 6 the process formulates the 

model, [14] 

𝑌𝑡 = 𝐴1 ∗ 𝑌(𝑡 − 1) + 𝐴2 ∗ 𝑌(𝑡 − 2)+. . . +𝐴𝑝 ∗ 𝑌(𝑡 − 𝑝)

+ 𝜀𝑡 … (6) 

Where Yt represents the vector of endogenous 

variables at the time t, Ai are the coefficient matrices, p 

is the number of lags, and εt is the error term for this 

process. The VAR model captures the dynamic 

interactions between the system's internal indicators 

over temporal instance sets. An enhancement to the 

VAR framework is adding the MA element to capture 

shock error terms influencing the system process. The 

MA model is set up via equation 7. [11, 12] 

𝑌𝑡 = 𝜇 + 𝜀𝑡 + 𝐵1𝜀(𝑡 − 1)

+ 𝐵2𝜀(𝑡 − 2)+. . . +𝐵𝑞𝜀(𝑡 − 𝑞) … (7) 

Where, μ is the mean term, Bi are the 

coefficients, and q represents the number of lagged error 

terms. This model effectively captures the impact of past 

shock errors on the current states. Incorporating the 

seasonal fluctuations and trends, the VARMAx process 

extends to include the exogenous factors, leading to the 

VARMAX model, represented via equation 8, [13, 14] 

𝑌𝑡 = 𝐴1𝑌(𝑡 − 1)+. . . +𝐴𝑝𝑌(𝑡 − 𝑝)

+ 𝐵1𝜀(𝑡 − 1)+. . . +𝐵𝑞𝜀(𝑡 − 𝑞)

+ 𝐷1𝑋(𝑡 − 1)+. . . +𝐷𝑟𝑋(𝑡 − 𝑟)

+ 𝜀𝑡 … (8) 

Where, Xt represents the vector of exogenous 

variables, Di are the coefficients for exogenous 

components, and r is the number of exogenous lags. The 

strength of the VARMAx process lies in its ability to blend 

these intricate models, forming a comprehensive 

prediction model, which is represented via equation 9, 

[13] 

𝑌𝑡 = 𝐶 + 𝐴1𝑌(𝑡 − 1)+. . . +𝐴𝑝𝑌(𝑡 − 𝑝)

+ 𝐵1𝜀(𝑡 − 1)+. . . +𝐵𝑞𝜀(𝑡 − 𝑞)

+ 𝐷1𝑋(𝑡 − 1)+. . . +𝐷𝑟𝑋(𝑡 − 𝑟)

+ 𝜀𝑡 … (9) 

Where, C is the constant term, giving a base 

upon which the variables fluctuate with regard to 

different scenarios. The VARMAx model's predictive 

power can be made more specific by estimating its 

parameters with the Maximum Likelihood Estimation 

(MLE), as formulated via equation 10: [12, 13] 

𝜃′ = 𝑎𝑟𝑔  max(𝜃, 𝐿(𝜃; 𝑌)) … (10) 

Where, θ' are the estimated parameters, and 

L(θ;Y) is the likelihood function of the observed time 

series Y given the parameters θ for different use cases. 

To evaluate the model's fit and error, the Akaike 

Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) are employed, which are expressed via 

equations 11 & 12, 

𝐴𝐼𝐶 = −2𝑙𝑛(𝐿) + 2𝑘 … (11) 

𝐵𝐼𝐶 = −2𝑙𝑛(𝐿) + 𝑘𝑙𝑛(𝑛) … (12) 

Where, L is the probability of the model, k is the 

number of estimated parameters, and n represents the 

sample sizes. The VARMAx process concludes with 

forecasting future values, employing the estimated 

model parameters in process. The forecasted value is 

ℎ+ for a horizon ℎ is given via equation 13, [14,15] 

𝑌′(𝑡 + ℎ) = 𝐴1𝑌(𝑡 + ℎ − 1)+. . . +𝐴𝑝𝑌(𝑡 + ℎ − 𝑝)

+ 𝐵1𝜀(𝑡 + ℎ − 1)+. . . +𝐵′𝑞𝜀(𝑡 + ℎ − 𝑞)

+ 𝐷1𝑋(𝑡 + ℎ − 1)+. . . +𝐷𝑟𝑋(𝑡 + ℎ

− 𝑟) … (13) 

Hence, the VARMAx process here is a balanced 

mixture of statistical robustness and predictive savvy 

and offers a subtler understanding about the interplay of 

several performance measures and external factors. 

Subsequently, the integration of GAN with a digital twin 

framework forms one of the strong cornerstones for the 

strategy on how to raise the classification levels of 

performance in this model. This is an integration of 

mathematical abstractions and computational innovation 

aimed at enhancing the model's capacity to detect and 

neutralize different types of attack vectors for distinct 

scenarios.  

The heart of this GAN framework is a duality of 

fusion: that of both the generator, G, and the 

discriminator, D, which are locked in an ongoing dynamic 

game of strategies. The generator generates samples 

such that they are indistinguishable from natural 

samples, but the discriminator differentiates between the 

natural samples and the generated artificial samples. 

The generator is given as G(z; θg) where z is the noise 

vector and θg are the parameters of the generator, and 

D(x; θd) is the discriminator with x as the data input and 

θd as the parameters of the discriminator in process [14]. 

Their objectives are mathematically formulated 

using the value function V(G, D) of the GAN as 

presented via equation 14, [14, 15] 
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𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧

∼ 𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] … (14) 

Equation 14 captures the essence of the 

adversarial game in which D maximizes the probability 

of correct classification of real and generated samples 

while G minimizes the probability of its output samples 

being classified as fake for different sample sets. The 

training process for G and D involves alternating 

gradient descent steps. The discriminator's training 

involves optimizing θd to maximize V(D,G), formulated 

via equation 15, [14] 

𝛻𝜃𝑑
1

𝑚
∑ [𝑙𝑜𝑔𝐷(𝑥(𝑖)) + 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))] … (15)

𝑚

𝑖=1

 

The training for G and D is alternated by gradient 

descent steps. The discriminator's training involves 

optimizing θd to maximize V(D, G), formulated via 

equation 16 [14] 

𝛻𝜃𝑔
1

𝑚
∑ 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧(𝑖))))

𝑚

𝑖=1

… (16) 

The real world is simulated using the digital twin 

framework, through which attack vectors for every 

possible scenario are identified and analyzed. The 

simulation, having the basis of differential equations, 

captures the systems' dynamics. The state of the system 

at any time t can be represented as S(t), and it evolves 

via equation 17: [11,12, 13, 14] 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑓(𝑆(𝑡), 𝑡) … (17) 

Let where, f refers to the mapping of the 

changes of the system over sets of times into the image 

space. Such interaction between GAN and DT is very 

important. Samples that are generated using the GAN 

are passed through the digital twin in order to reproduce 

attacks and thus test in a simulation environment. From 

the analysis of the outputs and responses received for 

various conditions of inputs, it leads towards the iterative 

optimization process. Here is the description via 

equation 18: [12, 13, 14] 

𝑆′(𝑡 + 1) = 𝑆(𝑡) + 𝛥𝑡 ⋅ 𝑓(𝑆(𝑡), 𝑡) … (18) 

Where, S’(t+1) is the predicted state of the system at 

time t+1, and Δt is a small timestamp for this process. 

The Figure 2: given is a flowchart that illustrates 

the process of detection and handling of adversarial 

attacks in a machine learning system using Deep Dyna-

Q Learning, VARMAx Operations, and GAN-based 

sample generation. The output of this comprehensive 

process is a set of mitigated attacks where the model 

identifies potential threats, simulates them, and devises 

strategies to neutralize them for different attack types. 

The GAN, with its generative prowess, offers a diverse 

array of attack scenarios, while the digital twin 

framework offers a sandbox for testing and refining 

defense mechanisms. This is because the GANs are 

coupled with a digital twin framework within this model; 

hence, it constitutes a huge advancement in the 

application of AI to the cyber security process. Using a 

chain of intricate equations and iterative procedures, the 

model is not only a precursor to mitigating cyber-attacks 

but actively gets involved in this process as a proactive 

and dynamic approach to new challenges in cyber 

security. This synergy of generative modeling and 

simulation will bring forth a strong platform to 

understand, predict, and counter the plethora of 

adversarial tactics in digital realms, under real-time 

scenarios. 

A comprehensive statistical evaluation of the 

proposed model has been carried out for various real-

time scenarios [19, 20] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overall Flow for the Proposed Pre-Emption 

Process 

4. Result Analysis 

An innovative preemption model, which in itself 

is testimony to the advanced integration of machine 

learning and data processing techniques within the 

spectrum of cyber security, is that of this paper intricately 

integrating Deep Dyna Q Learning with VARMAx 

Operations. This paper shows how such a Deep Dyna Q 

Learning framework, taken as a cornerstone, is 

remarkably proficient to be very discriminatory in telling 
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apart key performance indicators - including accuracy, 

confidence levels, training loss, prediction performance, 

and anomaly occurrence. Notably, the model uses the 

state-of-the-art GridCAM++ process for tracking 

explainability performance, making the process of AI 

decision making truly transparent and understandable. 

These indicators are carefully analyzed to unravel their 

complex interrelations and will form the backbone of a 

robust model adept in predicting adversaries' attacks 

[19]. 

It further adds GAN-based sample generation 

with a digital twin framework for significantly enhanced 

classification performance. That would allow comparing 

in detail, and efficiently filtering different kinds of attack 

vectors to customize the defense mechanism according 

to specific scenarios. This complex amalgamation of 

machine learning and data processing methodologies 

results in a paradigm-shifting tool in cyber security, 

where the approach toward the prevention and 

mitigation of adversarial attacks takes on a whole new 

face. The experimental setup for this work was chosen 

with careful considerations to test the model's 

performance in the area of the preempting of adversarial 

attacks [20]. 

This was essential in establishing the 

capabilities of the model, as indicated in the abstract, 

and confirmed by the results. The DMAPDQV model was 

verified based on three prime databases which included; 

DRELAB, APRICOT and TCAB, each of these 

databases had something different to offer, hence the 

possibility of testing the model in several scenarios. 

 DRELAB Database: it holds the biggest dataset 

of both adversarial and legitimate network 

traffic, with over 500,000 records that include 

70% normal activity and 30% adversarial 

patterns. DRELAB is a heterogeneous database 

and comprises of various attack vectors like 

DDoS malware and phishing attacks. 

 APRICOT Database: It deals with AI-based 

adversarial attacks especially image and pattern 

recognition systems. It consists of 300,000 

samples which are 60% normal images and 

40% adversarial images. The advanced 

methods of creating adversarial samples, 

GANs, and deepfakes, make the APRICOT 

adversarial samples tough to manage with 

DMAPDQV image-based attack detection. 

 TCAB Database: It is essentially transactional 

data, hence highly suitable for financial fraud 

detection. It includes around 400,000 

transaction records in which 65% are legitimate 

transactions and the remaining 35% are 

malicious. This database is used to test the 

model in a financial environment where 

precision and recall are critical for various 

malicious attacks. The experimental process 

involves executing the DMAPDQV model and 

comparative models Meta GAN, PBA, FFAED 

on each database. 

The performance metrics that were tracked 

include precision, accuracy, recall, delay, AUC, and 

specificity [21]. 

The specific parameters used are as follows: 

Sample Size (NTS): It varies between 27,000 and 

450,000 for scalability and robustness. 

Learning Rate: Fixed at 0.01 for smooth 

learning of all models. 

Batch Size: 64, to find a balance between 

computational efficiency and learning accuracy. 

Epochs: 50, to ensure proper learning without 

overfitting. 

Optimizer: Adam, for efficient and adaptive 

gradient descent. 

Loss Function: Cross-entropy to aptly evaluate 

the performance on the binary classification task. 

Deep Dyna Q learning is used with VARMAx 

operations, at the core of DMAPDQV. This combines 

deep learning for adaptive exploration, fast adaptation of 

the model, and VARMAx operations to aid it in learning 

from emergent adversarial patterns fast. Deep Dyna Q 

Learning framework will identify the performance 

indicators and VARMAx Operations will further find out 

the endogenous and exogenous variables so that the 

predictive ability of the model will increase. All of the 

databases that are involved did preprocessing by 

normalizing, feature extraction, and a process of data 

augmentation. For the use case with APRICOT data, 

following steps are added: resized images, 

standardization of format [22].  

The model's performance will be measured by 

Accuracy: Actually predicted positive 

observations divided by the total positive. 

Precision: Number of correctly predicted 

observations divided by all the observations. 

Recall: Actually predicted positive observations 

divided by actual positives 

Delay: Time taken by the model to detect an 

adversarial attack 

AUC: Area under ROC curve -the competency 

to classify between two classes. 

Specificity: This measures the ability to classify 

actual negatives for different scenarios. 

This experimental setup was quite important as 

it was very comprehensive in its approach and made use 

of several databases. Being so complex, along with a 

variety of metrics, the DMAPDQV model ensures robust 

validation regarding its ability to predict adversarial 
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attacks under various scenarios. Based on this setup, 

equations 19, 20 and 21 were used to calculate the 

precision (P), accuracy (A), and recall (R), levels based 

on this technique, while equations 22 & 23 were used to 

estimate the overall precision (AUC) & Specificity (Sp) 

as follows, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
… (19) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
… (20) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
… (21) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 … (22) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
… (23) 

There are three kinds of predictions made on a 

test set, such as: TP (True Positive) kinds: attack 

instance types; FP (False Positive) kinds: non-attack 

instance types; and FN (False Negative) kinds: wrong 

kinds of attack instance types for the different kinds of 

scenarios, all of which the test sets documentation uses. 

To determine the values of TP, TN, FP, and FN for these 

three scenarios, we made a comparison between the 

likelihood projected by Attack using the actual status of 

Attack in samples of the test dataset by techniques Meta 

GAN [3], PHYSICAL BLACK-BOX ADVERSARIAL 

ATTACKS (PBA) [4], and Feature Fusion Based 

Adversarial Example Detection (FFAED) [16]. So, we 

are able to predict these metrics values for the 

suggested model process outcome. Figure 3 shows the 

precision levels from these evaluations. For the initial 

step with 27k NTS, DMAPDQV outperforms Meta GAN 

with 87.70%, PBA with 88.09%, and FFAED with 85.75% 

by achieving a precision of 92.09%. Interestingly, at 81k 

NTS, the precision of DMAPDQV slightly dips to 87.93%, 

which is closer to the other models [22, 23]. 

However, this pattern is an exception to the 

constant dominance. For example, when NTS is of size 

150k, high performance is retrieved by DMAPDQV at a 

precision of 96.96%.     Thus, the algorithm proves itself 

to be both robust and adaptive. Further testing at higher 

sample sizes, say 300k NTS, reveals that DMAPDQV 

retains a high precision rate of 94.22%, while Meta GAN 

and PBA fluctuate at lower precisions of 84.69% and 

82.84%, respectively. That is, DMAPDQV scales 

perfectly, retaining high accuracy with an increased 

number of samples, an important attribute in real-world 

applications, where the volume of data is high. High 

precision maintained by DMAPDQV across several NTS 

points toward its better predictive capability, possibly 

due to the integration of Deep Dyna Q Learning with 

VARMAx Operations. This integration allows DMAPDQV 

to learn and predict adversarial behaviors adaptively 

better than its peers, which could rely on less advanced 

or singular approaches. In this regard, the precision data 

show that the observed results prove DMAPDQV as 

superior in its performance in predicting adversarial 

attacks, especially with large datasets. Its advanced 

mechanisms for learning under different conditions 

make it a highly effective model in cyber security 

applications in machine learning systems [20]. 

In Figure 4, accuracy of the models has been 

compared below. The DMAPDQV model started with 

27k NTS with an accuracy of 89.43%, which is higher 

than Meta GAN's 85.84% and PBA's 83.71% but a bit 

lower than FFAED's 90.48%. Preliminary data point 

shows that DMAPDQV is competitively performing in the 

smaller dataset. With an increase in NTS, DMAPDQV 

tends to surpass the other models in most cases. For 

example, at 96k NTS, DMAPDQV attained 91.31% 

accuracy while Meta GAN attained 88.06%, PBA 

attained 83.02%, and FFAED attained 82.10%.  

This is because DMAPDQV maintains high 

accuracy with an increase in the complexity of the 

dataset. Notably, the notable observation is at 195k NTS 

where DMAPDQV achieves an accuracy of 87.84%, 

although lower than its peak performance, it surpasses 

the accuracy rates of Meta GAN, PBA, and FFAED, 

which are 78.98%, 80.11%, and 84.18%, respectively. 

This attests that DMAPDQV is all-time consistent in 

performance. Max accuracy for DMAPDQV is achieved 

at 450k NTS by the impressive rate of 96.80%, much 

higher compared to its counterpart in rates; 77.28% as 

reported by Meta GAN, 83.30% PBA, and 87.73% 

FFAED. In this regard, such an accuracy level at the 

large NTS degree emphasizes that DMAPDQV holds 

scalability and robustness, something very important to 

real-time applications where large datasets along with 

complexity dominate. The implications of these accuracy 

rates in the real world are enormous. Such accuracy at 

precognizing an adversarial attack is so crucial to 

building reliable and secure machine learning-based 

systems. Such steady history of high accuracy for 

DMAPDQV means fewer opportunities for false positives 

and false negatives, hence valid activities are not 

flagged as attacks, and actual attacks are not being 

missed. This reliability is significant especially in the 

domains of finance, health and self-driving vehicles, in 

which the cost of errors may be high. Accuracy data 

therefore suggests that model DMAPDQV would most 

definitely prove successful at preventing an adversarial 

attack over volumes of varying data. This would suggest 

potential in offering strong and reliable protection against 

various adversarial attacks in the real-time applications, 

especially with high accuracy rates even for larger sets 

of data. As illustrated similarly in Figure 5, recall levels 

are indicated by, Onset with 27k NTS, DMAPDQV recall 

stands at 92.50%, being marginally low than PBA at 

92.87%, and yet surpasses Meta GAN's recall rate at 

85.20% and that of FFAED at 83.66% [22, 23]. 

This first run performance indicates that 

DMAPDQV is capable of detecting most adversarial 

attacks, an important feature for early-stage detection in 
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real-time applications. With increasing NTS, DMAPDQV 

always shows high recall rates. For example, at 111k 

NTS, DMAPDQV obtains a recall of 94.20%, which is 

significantly higher than the other models. This shows 

that DMAPDQV can effectively identify a significant 

percentage of real adversarial attacks as the complexity 

of the dataset grows. Of particular interest is the drop in 

recall of DMAPDQV to 87.08% at 195k NTS. Although it 

performs comparably with other models even after the 

decrease, it exhibits resilience under various testing 

conditions.  

At 375k NTS, the same pattern of high 

performance is followed by DMAPDQV, which recalls at 

92.72% compared to the other models. The maximum 

recall for DMAPDQV is obtained at 48k NTS, with an 

impressive rate of 93.52%. High recall rate is important 

in real-time scenarios in which the cost of missing an 

adversarial attack can be very high. For instance, 

financial transaction monitoring and autonomous vehicle 

navigation are security-critical systems; high recall 

ensures that most malicious activities are caught, 

thereby avoiding security breaches or safety incidents in 

process [22, 23, 24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Observed Precision during Pre-emption of Adversarial Attacks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Observed Accuracy during Pre-emption of Adversarial Attacks. 
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Figure 5. Observed Recall during Pre-emption of Adversarial Attacks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Observed Delay during Pre-emption of Adversarial Attacks 

 

Hence, the above-mentioned recall data depict 

how DMAPDQV can successfully identify adversarial 

attacks at various sample sizes. High recall rates at 

larger sample sizes depict the possibility of using this 

model for robust protection against adversarial attacks in 

real-time applications. High recall rates with high 

precision and accuracy depict that DMAPDQV is a very 

reliable model for cyber security in machine learning 

systems. Figure 6 shows the delay required for the 

prediction process, Initially, at 27k NTS (Number of 

Samples used for Testing the Process), DMAPDQV 

shows a delay of 92.82 ms, which is less than Meta 

GAN's 124.05 ms, PBA's 107.01 ms, and FFAED's 

105.14 ms. This reflects that DMAPDQV responds more 

quickly in identifying adversarial activities, which is an 

important characteristic for early intervention in real-time 

systems [23, 24] 

As the NTS increases, a pattern emerges where 

DMAPDQV consistently shows lower or comparable 

delays to the other models. One interesting recording is 

at 225k NTS where DMAPDQV records a delay of 99.30 

ms. while not the lowest for DMAPDQV, such a value 

actually competes favorably with that of other models, 

thereby providing evidence for stability and consistency 

when tested across the range of testing conditions. 

However, in a real-time setting, the above delay times 

really matter. In applications like online fraud detection, 

autonomous systems, or real-time threat analysis, there 
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is a crucial need for minimizing the delay associated with 

the adversarial attacks to be detected. This would make 

sure that it responds within an appropriate time so that 

damages or security breaches may be prevented in 

advance. In financial transaction monitoring, a difference 

of just milliseconds can be seen between stopping the 

fraudulent transaction and suffering losses on a 

significant scale. Thus, the delay data show that the 

DMAPDQV model is very effective in giving timely 

responses to adversarial attacks. Its consistency in 

performance with different sample sizes, mostly having 

lower delays than other models, makes it very suitable 

for real-time applications where quick detection and 

response to adversarial attacks are of prime importance. 

The efficiency of DMAPDQV in maintaining low delay 

times makes it a reliable option for enhancing the 

security and responsiveness of machine learning 

systems in various real-time scenarios [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Observed AUC during Pre-emption of Adversarial Attacks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Observed Specificity during Pre-emption of Adversarial Attacks 
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From Figure 7, it can be noted that the AUC 

levels of the models are as follows, At the outset with 27k 

NTS (Number of Samples used for Testing the Process), 

DMAPDQV shows an impressive AUC of 81.80%, way 

better than that of Meta GAN's 77.53%, PBA's 70.73%, 

and FFAED's 72.30%. This signifies the great potential 

of DMAPDQV in distinguishing normal from adversarial 

instances, which is of extreme importance in the early 

detection and response process. DMAPDQV has a high 

AUC with increased samples, where it often has a higher 

value than the others. For example, for 66k NTS, the 

AUC of DMAPDQV is 91.19%, which is way above the 

others. This implies that this model is much more 

accurate and reliable in data point classification across 

various conditions. For example, an observation at 225k 

NTS shows that DMAPDQV achieves an AUC of 

89.22%, again outperforming the other models [20, 21, 

22]. 

This consistency in maintaining a high AUC 

across different sample sizes shows that DMAPDQV is 

robust and adaptable in different operational scenarios. 

The impact of AUC in real-time scenarios is quite high. 

In applications like network security or fraud detection, a 

high AUC means the model is highly effective in 

distinguishing between normal and anomalous behavior. 

This clearly shows that the AUC of DMAPDQV is 

persistently higher compared to other models; hence, it 

is highly suitable for real-time deployment where the 

distinction between normal and adversarial activities is 

vital [20, 21]. 

The reliability and accuracy shown by 

DMAPDQV in its AUC performance make this model a 

more valuable tool for enhancing security and increasing 

the efficiency of machine learning systems in different 

real-time applications. Similarly, the Specificity levels 

can be observed from Figure 8 as follows, At 27k NTS 

(Number of Samples used for Testing the Process), 

DMAPDQV shows a specificity of 82.49%, which is 

higher than Meta GAN's 80.72%, PBA's 74.29%, and 

FFAED's 79.32%. This demonstrates DMAPDQV's 

capability to accurately identify legitimate instances, a 

crucial factor in avoiding unnecessary disruptions in 

operations. For sample sizes greater than that, the 

model DMAPDQV also maintains very high specificity. 

At 66k NTS, for example, its specificity stands at 88.42% 

and does better than other models [19, 21]. 

Real-time environments usually cannot afford 

many false positives at reasonable costs-think of it as an 

automatic surveillance system or an intrusion detection 

system. The most telling observation is in 144k NTS 

when DMAPDQV comes out with 93.84% of specificity, 

outperforming compared models. In this case, the high 

percentage rate means an effective model toward 

distinguishing legitimate and adversarial actions, 

thereby leading to a decline in false-positive rates. 

Reducing false positive rates in any real-time scenario is 

tremendous. As pointed out, where systems have to 

distinguish between patterns that are either normal or 

anomalous, this high specificity implies that normal 

activity is not considered a threat and, therefore less 

manual checks should be performed over the system 

that would otherwise occupy resources on fake alarms 

[23, 24]. 

More efficient operation could be achieved 

under such conditions and, therefore the observed 

specificity data point out an improvement in the 

classification of non-adversarial samples by the model 

DMAPDQV of all sample sizes. This suggests high 

specificity for all models but much higher compared to 

other models; this can be especially useful in real-time 

applications, where it is as important not to trigger false 

positives as to detect the presence of threats. The high 

rates of maintaining specificity make DMAPDQV a good, 

reliable choice in enhancing security and operational 

efficiency for machine learning in various applications. 

Several key performance metrics reflect model results 

relative to DMAPDQV that indicate a marked 

improvement over any developed adversarial attack 

mitigation frameworks so far. The model achieved higher 

precision, accuracy, recall, specificity, and AUC values 

in the experiments conducted on DRELAB, APRICOT, 

and TCAB databases when compared with the other 

models of Meta GAN, PBA, and FFAED process. 

Table 1. List of Abbreviations 

Abbreviation Full Form 

DMAPDQV Deep Dyna Q with VARMAx 

Operations for Pre-emption 

VARMAx Vector Autoregressive Moving 

Average with Exogenous Inputs 

GAN Generative Adversarial Network 

AUC Area Under Curve 

Q-Learning Quality Learning 

GridCAM++ Gradient-based Class Activation 

Mapping 

NTS Number of Testing Samples 

DDoS Distributed Denial of Service 

MLE Maximum Likelihood Estimation 

AIC Akaike Information Criterion 

BIC Bayesian Information Criterion 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

TPR True Positive Rate 

FPR False Positive Rate 
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PBA Physical Black-box Adversarial 

Attack 

FFAED Feature Fusion Based Adversarial 

Example Detection 

ROC Receiver Operating Characteristic 

DRELAB Database for Real-time Adversarial 

Learning of Attacks 

APRICOT Adversarial Perturbations for Image 

Classification in Organized Training 

TCAB Transaction-based Cyber Attack 

Benchmark 

ReLU Rectified Linear Unit 

 

5. Conclusion  

This research is therefore a major milestone in 

the cyber security and AI safety fields. The conclusion of 

this study lays in extensive experimental analysis across 

different databases such as DRELAB, APRICOT, and 

TCAB. Thereby, the results of such experiments are 

essential to enforce the validation of the DMAPDQV 

model. The DMAPDQV model has shown an exceptional 

ability in the preemption of adversarial attacks, superior 

to the rest of the available models, which include Meta 

GAN, PBA, and FFAED, in all of the chosen key metrics. 

The model especially exhibited a lot of improvement on 

precision, accuracy, recall, and specificity in addition to 

decreased delay and an increase in AUC levels in 

process. 

Deep Dyna Q Learning with VARMAx 

Operations has upped the game in terms of overall 

predictability and adaptability of the machine learning 

system across different conditions. The model will learn 

from, adapt to new and evolving attack patterns, which 

will keep the model relevant and effective in a changing 

threat landscape. Looking ahead, the potential for 

improvement and application of the DMAPDQV model is 

vast and multidimensional for the process. Further 

refinements of the learning algorithms could be made in 

order to increase the efficiency of the model with respect 

to even larger datasets & samples. This would enable 

the model to be used in larger domains, including large-

scale network security and big data analytics, where 

handling vast datasets is routine for the process.  

 

6. Future Scopes 

Therefore, the promising direction will be to 

apply the model in applications as diverse as healthcare 

and finance, where strong security measures are 

required because the data is sensitive for the process. It 

may help make near-instantaneous detection and 

response to adversarial attacks possible, a pressing 

need in sectors such as defense and critical 

infrastructure protection.  

Finally, an excellent opportunity would be to 

couple the DMAPDQV model with the existing 

frameworks of cyber security to provide a more 

wholesome and layered form of defense strategy. This 

enables organizations to put together the power of 

different approaches to build up a more impregnable 

bulwark for the adversarial attacks. To conclude, 

DMAPDQV model constitutes a giant stride in the 

direction of AI as well as cyber security sets. 
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