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Abstract: Untreated glaucoma, a chronic eye illness, can cause irreversible vision loss if not caught early. The 

condition begins with abnormalities in the eye's drainage flow, leading to a rise in intraocular pressure. As the disease 

progresses, the optic nerve head deteriorates, resulting in vision loss. Ophthalmologists need extensive training and 

expertise to interpret findings accurately during medical follow-ups to examine the retina. To address this challenge, 

deep learning-based algorithms have been developed to screen for and diagnose glaucoma using images of the 

optic nerve, retinal structures, and retinal fundus. This research explores the use of classification and segmentation 

algorithms based on ResNet to identify glaucoma in fundus images. We fine-tuned the classifier using the DuckPack 

optimizer and employed XGBoost, LightGBM, and CatBoost algorithms for classification. The results were promising. 

The segmentation model based on ResNet effectively extracted features, aiding the classification models in 

accurately identifying glaucoma. All three algorithms performed admirably, though further fine-tuning is needed to 

determine the best one. Enhancing the model's performance was straightforward after using the DuckPack optimizer 

for fine-tuning. This study highlights the promising applications of deep learning and sophisticated machine learning 

algorithms in glaucoma detection. Its findings could inform the development of future diagnostic tools. 

Keywords: Glaucoma Detection, Resnet Based Segmentation, Duck Pack Optimizer, Catboost, Lightgbm, Xgboost, 

Fundus Images 

 

1. Introduction 

Retinal ganglion cells deteriorate over time in 

glaucoma, an eye disease that, if left untreated, leads to 

irreversible vision loss. In 2020, it was estimated to affect 

80 million people of all ages [1]. A significant risk factor 

for glaucoma is an imbalance between the drainage and 

flow of aqueous humor fluid, which can lead to elevated 

intraocular pressure and ultimately cause the disease 

[2]. Other risk factors include age, race, and family 

history, which may increase the likelihood of developing 

glaucoma. Critical diagnostic methods for glaucoma 

include thorough evaluation of the optic nerve head, 

visual field tests, and extensive tonometry testing of the 

eyes [3]. However, these examinations typically require 

specialized knowledge, costly equipment, and a 

significant investment of time. Despite these limitations, 

the use of algorithms for automated glaucoma 

identification using fundus images is on the rise [4]. 

One of the most important ways to detect 

glaucoma is through fundus imaging, a non-invasive 

technique that is both conveniently accessible and 

provides vital information about the eye and optic nerve 

head [5]. This imaging method offers detailed 

descriptions of important areas of the retina, including 

their size, shape, and color [6]. Several studies have 

noted high sensitivity and specificity rates for glaucoma 
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diagnoses using fundus images, suggesting that deep 

learning algorithms have performed well in this area in 

recent years [7]. Nevertheless, there are many 

challenges and limitations to this method, including 

healthcare system bureaucracy, the need to collect large 

and diverse datasets, and the possibility of algorithm 

bias [8-9]. Glaucoma is a complex and progressive eye 

disease with various forms, stages, and risk factors. 

Accurate diagnosis and treatment require familiarity with 

these categories and their associated risk factors [10]. 

Additionally, using popular public databases can 

enhance the accuracy of diagnostic results and facilitate 

comparison with other studies on the same disease. 

There are three main forms of glaucoma [11]. 

The most prevalent, open-angle glaucoma, is caused by 

a gradual narrowing of the eye’s drainage angle, which 

raises intraocular pressure [12]. Conversely, angle-

closure glaucoma occurs when the iris enlarges and 

obstructs the drainage angle, causing an abrupt rise in 

intraocular pressure [13]. A less common form involves 

normal intraocular pressure. Depending on the type and 

severity of the condition, glaucoma patients can choose 

from treatments such as medication, surgery, eye drops, 

and laser therapy [14]. Diseases including diabetes and 

high blood pressure are among the risk factors linked to 

glaucoma [15]. A history of eye injury, long-term steroid 

use, and a high degree of near- or farsightedness are 

additional possible risk factors. Furthermore, people of 

Asian, Hispanic, or African heritage may be more 

susceptible to certain forms of glaucoma. Most of the risk 

factors for glaucoma are shown in Figure 4 [16]. 

Frequent early screening for glaucoma and routine eye 

exams may help identify and treat this condition, even if 

certain risk factors are beyond a patient's control. To 

detect glaucoma symptoms and reduce the risk of vision 

loss, patients with risk factors should undergo regular 

eye exams with an eye specialist [17]. 

This study adopts a dual approach, utilizing both 

segmentation and classification to enhance glaucoma 

detection accuracy. Initially, a ResNet-50-based 

segmentation model isolates critical features of the optic 

disc and optic cup, which are key indicators in glaucoma 

analysis. These segmented features are subsequently 

processed by advanced classification models (XGBoost, 

LightGBM, CatBoost) to accurately diagnose and 

classify the severity of glaucoma. This hybrid approach 

ensures a more robust and comprehensive diagnostic 

model. 

This study introduces a novel hybrid approach 

for glaucoma detection by integrating ResNet-50-based 

segmentation and advanced machine learning 

classifiers, including XGBoost, LightGBM, and 

CatBoost, optimized using the Duck Pack Optimizer 

(DPO). The ResNet-50 model effectively isolates optic 

disc and optic cup features, crucial for accurate 

glaucoma diagnosis, while the classifiers ensure precise 

classification across various disease stages. The 

introduction of DPO, inspired by duck foraging behavior, 

enhances hyperparameter optimization, yielding 

improved model accuracy and efficiency compared to 

traditional methods. Experiments on diverse datasets 

validate the robustness and generalizability of the 

proposed method, demonstrating high sensitivity, 

specificity, and accuracy. This comprehensive 

framework provides a resource-efficient and accurate 

diagnostic tool, paving the way for its integration into 

ophthalmological screening workflows to facilitate early 

glaucoma detection and intervention. 

The organization of the manuscript is as follows: 

Section 2 reviews related work on glaucoma detection 

using deep learning, highlighting challenges in current 

methods. Section 3 details our proposed methodology, 

including the ResNet-based segmentation model, 

classifiers (XGBoost, LightGBM, CatBoost), and Duck 

Pack Optimizer for hyperparameter tuning. Section 4 

presents the experimental setup, datasets, and results, 

evaluating the model's performance across glaucoma 

stages. Section 5 discusses the findings in comparison 

with state-of-the-art approaches, and Section 6 

concludes with key insights, contributions, and directions 

for future work. 

 

2. Related work 

Panahi et al. [17] suggested a novel, 

streamlined U-Net architecture to quickly segment the 

optic disc and retinal vessels. The core of this approach 

is a strengthened and modified structure, promising to 

shorten prediction times without sacrificing performance 

or accuracy levels seen in other state-of-the-art systems. 

On the DRIONS-DB dataset, this approach can segment 

the optic disc in 0.008 seconds, and on the DRIVE 

dataset, it can segment vessels in 0.03 seconds. These 

findings suggest the potential to create a real-time 

intelligent medical system that can be integrated with 

common hardware found in ophthalmology clinics. This 

approach improves ophthalmologists' ability to diagnose 

glaucoma by quickly segmenting the optic disc and 

retinal veins. 

Chuter et al. [18] built and tested a deep learning 

(DL) model to evaluate the quality of fundus photographs 

and quantify its effect on automated primary open-angle 

glaucoma (POAG) identification. A total of 11,350 

images were manually reviewed to establish the image 

quality ground truth. Human specialists rated the 

photographs as high or poor quality to determine POAG 

status. The DL quality model was trained using 

DIGS/ADAGES images and evaluated for efficacy on 

OHTS. By calculating the AUROC, it was determined 

that DL quality evaluation significantly improved the 

diagnostic accuracy of the DL POAG model in high-

quality images compared to low-quality photographs (P 

< 0.001). 

Sharma et al. [19] proposed a convolutional 

neural network (CNN) model for diagnosis, benefiting 
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many participants in the supply chain management 

network, including eye hospitals, medical professionals, 

ophthalmologists, patients, and insurance companies. 

The deployed model consists of three convolution layers 

and one flattening layer. The modified CNN model aimed 

to learn deep features with the fewest adjustable 

parameters. A feature reduction technique combining 

PCA and LDA was used to decrease the dimensionality 

of feature sets. An extreme learning machine (ELM) was 

then used for classification, with the ELM hidden node 

settings fine-tuned using the MOD-PSO method. Using 

5-fold stratified cross-validation improved the proposed 

model's general performance. The model was tested on 

the G1020 and ORIGA datasets, achieving a 97.80% 

accuracy rate on the G1020 dataset and a 98.46% 

accuracy rate on the ORIGA dataset. This tailored CNN 

model outperforms other state-of-the-art models using 

fewer variables. 

Madadi et al. [20] devised a progressive 

weighting technique to reduce negative knowledge 

transfer and maximize the correct transfer of source 

domain information. Low-rank coding was used to align 

the source and target distributions. The model was 

trained on three different scenarios to include glaucoma 

eyes: 1) eyes with abnormal optic discs regardless of 

visual fields, 2) eyes with abnormal visual fields except 

for those with concomitant glaucoma, and 3) eyes with 

both abnormalities. The model's generalizability was 

assessed using two separate datasets. The AUCs for 

glaucoma predictions were 0.90 for the first scenario, 

0.88 for the second, and 0.80 for the third, with 

corresponding accuracies of 0.82, 0.78, and 0.72. For 

glaucoma diagnosis, the AUCs were 0.98, 0.96, and 

0.93, with corresponding accuracies of 0.93, 0.91, and 

0.88. The suggested GDA model performed well in 

predicting and diagnosing glaucoma from fundus 

images, offering broad applicability. GDA could improve 

clinical practice and research by providing better 

understanding of who has glaucoma and who is at risk. 

Gao et al. [21] developed an automated 

approach for detecting images and calculating VCDR 

using deep learning techniques, specifically the YOLOv7 

architecture. They addressed the challenge of training a 

DL model on one population (e.g., Europeans) and using 

it to estimate VCDR in another population. After fine-

tuning their model using the REFUGE dataset, which 

contains photos from Chinese patients, it was trained on 

10 publicly available datasets. The DL-derived VCDR 

demonstrated remarkable accuracy, with a Pearson 

correlation value of 0.91 and a mean absolute error 

(MAE) of 0.0347 compared to human expert evaluations. 

The models outperformed previous methods on the 

REFUGE dataset with better Dice similarity coefficients 

and smaller MAEs. An optimization method was also 

developed to adjust DL outcomes for different 

populations, providing clinicians with a tool that improves 

speed and accuracy while reducing the human workload 

associated with image evaluation. This automated 

approach is a valuable tool for glaucoma identification, 

effectively distinguishing between glaucoma and non-

glaucoma patients. 

Kiyani et al. [22] proposed a deep learning 

architecture for glaucoma classification to address 

issues of insufficient data and high computing costs. The 

three-stage model, tested on a dataset of 16,328 photos 

from fused public datasets, uses data augmentation and 

normalization techniques to achieve high training 

(99.3%-99.8%) and testing accuracy. This model shows 

promise for rapid and reliable glaucoma detection using 

convolutional neural networks and transfer learning. 

However, it is crucial to regularly validate on various 

datasets and consider ethical aspects such as 

transparency and fairness in medical applications. The 

model's credibility raises hopes for its usefulness in 

glaucoma screenings, which could help prevent 

permanent vision loss. 

Kavitha et al. [23] suggested a new method for 

early glaucoma detection using fuzzy differential 

equations and fuzzy expert systems. They calculated the 

intensities and peak levels of various picture sections. 

After locating the peak regions, they calculated the 

recurrence connections between them. The picture was 

partitioned based on different concentrations of similar 

and dissimilar elements. The combined fuzzy matrix and 

FDE produced a threshold picture based on comparable 

and distinct concentration levels and spatial frequency. 

This method differentiated between normal and 

abnormal eye conditions, effectively detecting patients 

with glaucomatous eyes. 

 

2.1 Research Gap 

Despite advances in automated glaucoma 

detection, several limitations remain in existing 

approaches. Many studies employ CNN-based 

classification models without incorporating 

segmentation, which limits the ability to focus on critical 

regions such as the optic disc and cup for precise 

diagnosis. Furthermore, while recent works have 

explored various classifiers, few have systematically 

combined them with deep segmentation networks, 

potentially enhancing the detection and classification 

accuracy. Additionally, the optimization of classifier 

hyper parameters remains a challenge, with standard 

optimizers often leading to suboptimal results in complex 

medical image datasets. Although recent models show 

promise, they typically rely on single algorithms or lack 

comprehensive validation across diverse datasets, 

reducing their generalizability and robustness in clinical 

applications. This study addresses these gaps by 

integrating ResNet-based segmentation with advanced 

classifiers (XGBoost, LightGBM, CatBoost), optimized 

through the novel Duck Pack Optimizer. By leveraging 

both segmentation and classification with enhanced 

optimization, our approach aims to improve accuracy 
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and robustness, making it more suitable for real-world 

glaucoma screening. 

3. Proposed Model 

3.1. Datasets 

Using three datasets that comprise fundus 

pictures for segmentation and classification, we assess 

the suggested strategy in our study. Image sets with 

accompanying expert annotations are available in all 

three datasets (REFUGE,Drishti-GS,and Rim-One-r3 

[24–25]). Figure 1 displays some sample photos from the 

REFUGE dataset. Figure 1, with rows 1 and 2, shows 

the original picture and the ground truth image, 

respectively. The backdrop class is displayed by white 

pixels in ground-truth photographs, whereas OD and OC 

are represented by pixels, correspondingly. The photos 

used for training, validation, and testing have been 

evenly distributed across REFUGE, with 400 images 

allocated to each category. Due to the large intra-dataset 

differences, REFUGE is one of the most recent and 

difficult datasets. 

Row 1 of Figure 2 displays example photos from 

the Rim-One-r3 dataset, whereas row 2 displays the 

same images from the Drishti-GS dataset. The 159 

fundus photos in Rim-One-r3, all annotated by experts, 

were gathered by the MIAG group in Spain. When it 

comes to object and object category segmentation, the 

Drishti-GS dataset is among the gold standards. There 

are a grand total of 101 images: 50 for training and 51 

for testing.  

You can find the OD and OC annotations in 

Figure 2b and 2c. In the ground-truth photos, the 

background class is represented by black pixels, while 

the desired classes (OC and OD) are represented by 

white pixels. The segmentation of these three datasets 

is complicated because of the wide range of intensity 

levels, object sizes (both OC and OD), and lighting 

effects included in each. Accurate segmentation is 

already difficult, as the majority of the photos include a 

little OC with fuzzy borders. 

 

Figure 1. Example images from the REFUGE dataset lengthways with expert annotation imageries 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sample imageries from row 1: Rim-One-r3; row 2: Drishti-GS databases. (a) Original image (b) ground-

truth image with OD annotation (c) ground-truth image with the OC footnote. 
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3.2 Pre-Processing 

We used the binary masking approach to pre-

process the photos in order to save computing time and 

permit better outcomes. This method assigns binary 

values to picture pixels and the backdrop, which aids in 

identifying the ROI. For efficient processing, the picture 

was turned into grayscale. Each pixel was categorized 

as either belonging to the background (pixel value of 0) 

or the region of interest (pixel value of 1) in order to 

generate a binary mask. The algorithms were given the 

extracted ROI, which was an image with a fixed 

resolution of 224 × 224. All of the suggested methods for 

glaucoma diagnosis were able to benefit from ROI 

extraction in terms of speed. 

 

3.2.1. Data Augmentation 

When there is a lack of data that is statistically 

or biologically significant, the data augmentation 

approach is employed to enhance the number of 

photographs. Given the scarcity of medical photographs, 

the augmentation procedure offers a more viable 

solution to this issue. This method makes additional 

copies of the data by slightly altering the original. By 

improving the model's performance and diagnostic 

capabilities, the data augmentation strategy can also 

help deep learning models avoid overfitting. Images are 

rotated, cropped, scaled, and flipped horizontally and 

vertically among other processes. 

3.3. Segmentation using Deep Learning  

The convolutional network that takes high-

dimensional pictures as input and uses them to gradually 

extract characteristics with many dimensions. In 

convolutional neural network (CNN) designs, the 

number of layers grows in relation to the size of the input 

pictures. As it delves deeper, the network improves its 

accuracy in learning. The increase in computing time is 

the main downside of deeper networks, though. 

Features in CNNs that process images, recognize 

objects, segment images, classify images, process 

videos, and understand natural language have showed 

promise [26]. In the medical field, the use of CNN 

architectures for illness diagnosis has yielded 

remarkable results. 

 

3.3.1. ResNet-50 Architecture 

By utilizing the skip connection strategy, the 

ResNet—a condensed version of the residual network—

resolves the vanishing gradient problem. Problems with 

network degradation owing to greater network depth 

existed prior to ResNet. A larger training error was the 

end outcome of this deterioration. The ResNet design 

uses the skip connection approach to alleviate this 

difficulty. This design is easy to tune, requires less 

training time, and has improved detection accuracy. The 

ResNet architecture may be used for many medical 

image processing and disease diagnostic tasks. Also, it's 

quite effective in recognizing faces and detecting 

objects. The ResNet-50 design is illustrated in Figure 3 

[27]. The use of a 1 x 1 convolution layer and the 

omission of three layers distinguish ResNet-50 from its 

predecessors, ResNet-18 and ResNet-34. This design 

can divide data into seven categories using its fifty ayes. 

It finds extensive use in the fields of object identification, 

object localization, and picture recognition. As a result, 

computational expenses have been significantly 

decreased. 

The proposed methodology begins by gathering 

fundus images from several publicly available datasets, 

which are then rescaled as necessary to ensure 

uniformity. The dataset is subsequently divided into 

training, validation, and testing sets, with an 80-10-10 

split. To address data scarcity and enhance model 

performance, data augmentation techniques such as 

flipping, rescaling, and rotating are applied to increase 

the diversity of images. The pre-processed data is then 

used for classification, leveraging pre-trained deep 

learning architectures like ResNet-50 to extract critical 

features. Finally, the model analyzes these features to 

accurately determine whether the input image 

represents healthy eyes or exhibits signs of glaucoma. 

 

 

Figure 3. Block diagram of ResNet-50 construction 



Vol 7 Iss 2 Year 2025  Chinthakunta Manjunath et.al, /2025 

Int. Res. J. Multidiscip. Technovation, 7(2) (2025) 108-120 | 113 

3.4. Classifiers 

With their quick training rates and easy 

parameter adjustment, boosting approaches have 

become more beneficial for medium datasets, even if 

artificial neural networks have lately seen a renaissance 

in popularity. A more accurate classifier can be created 

by combining many weak classifiers using boosting 

methods. Partitioning the training data does this. Then, 

several models or one model with a modified 

configuration are trained using each component. Finally, 

all of the outcomes are summed together. Three 

prominent gradient boosting methods built on decision 

trees are used to our advantage in this work. The 

suggested model's sample output is exposed in Figure 

4. 

 

3.4.1. XGBoost 

Graded Boosted Decision Tree (GBDT) is an 

algorithm that this algorithm uses. Scalability is 

XGBoost's defining characteristic when contrasted with 

other boosting decision trees. This approach is ten times 

faster than the others that have been published. The 

classifier might overfit the data even when it learns 

quickly. XGBoost stands out from other gradient 

boosting algorithms because to its regularization method 

that minimizes overfitting. This leads to more rapid and 

reliable model adjustment. To the goal function, 

XGBoost incorporates a regularization term in the 

following way: 

𝑜𝑏𝑗(𝜃) = 𝐿(𝜃) + Ω(𝜃)    (1) 

where 𝐿(𝜃) is loss function, and Ω(𝜃) is function 

that regulates the model's complexity to prevent 

overfitting. Here is the formula for calculating the 

regularization function: 

Ω(𝜃) = 𝛾𝑁 +
1

2
𝜆‖𝑤‖2    (2) 

where 𝑁 is the total sum of decision tree nodes 

and w is the weights assigned to each node. The 

decision tree penalty limit is specified by the parameters 

γ besides λ. Setting the settings of the XGBoost 

hyperparameters is a crucial step since it allows for 

greater tweaking, which is a critical feature compared to 

other machine learning algorithms. The hyperparameter 

tuning of XGBoost is shown in Table 1.  

Table 1. XGBoost hyperparameters situation 

Value Parameters 

Gradient boosted tree Base learner 

0.5 Learning rate (η) 

250 Sum of trees 

0 Minimum loss reduction 

Finding the optimal settings for the XGBoost 

hyperparameters was a challenge, but a method known 

as the duck pack optimization algorithm (DPOA) 

emerged as a viable solution. There was a range of 

values for each hyperparameter that could be used to 

determine the optimal setting. We started by lowering the 

likelihood of overfitting by adjusting three XGBoost 

hyperparameters: "learning rate," "the number of 

gradient boosted trees," and "minimum loss reduction."”. 

  

3.4.2. LightGBM 

Among decision tree boosting algorithms, 

LightGBM stands out for its accuracy and reliability due 

to the complexity of the trees it produces. 

Results from tests on publicly accessible 

datasets show that LightGBM can slash the time it takes 

to train gradient boosting decision trees by a factor of 20 

without sacrificing accuracy. To get a better balance 

between speed and accuracy while utilizing LightGBM, 

one must first adjust the hyperparameters. LightGBM's 

exclusive feature bundling and gradient-based one-side 

sampling are two of its unique strategies for dealing with 

large data instances and features, respectively. The 

optimal settings for the LightGBM parameters were 

again determined using DPOA. Summary of the 

LightGBM hyperparameters configuration may be seen 

in Table 2.

 

 

Figure 4. Examples of categorized optic disc pictures. Left to right: two pictures of erroneous negative 

categorization, one true negative, and one true positive 
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Table 2. LightGBM hyperparameters situation 

Parameters Value 

Number of repetitions of the procedure 200 

Learning rate (𝜂) 0.5 

max sum of bins 100 

 

3.4.3. Catboost 

To improve categorical columns, CatBoost 

(which stands for "categorical boosting") use 

permutation approaches, one statistic. At each branch in 

the tree, CatBoost employs the greedy strategy to 

address the exponential increase in feature 

combinations. For features that have more parameter), 

the CatBoost algorithm follows these steps: Dividing, 

converting, and altering. 

 

3.4.4. Hyperparameter Optimization 

The DPO method is used to choose the 

hyperparameters of the two models, XGBoost and 

LightGBM. The DPO algorithm [28] offers a new 

perspective based on ducks' foraging performance, 

which is particularly relevant given the ducks' distinctive 

set of abilities. The parameters that a model's learning 

algorithm finds internally, such as its coefficients or 

weights, are different from hyperparameters. When 

configuring the model, the practitioner sets 

hyperparameters rather than parameters. When trying to 

determine the optimal values for an algorithm's 

hyperparameters on a specific dataset, it's usual practice 

to employ a grid search strategy or a random approach. 

Tuning an algorithm becomes increasingly time-

consuming as the number of hyperparameters that need 

adjustment increases. Finding or tuning just some of the 

model's hyperparameters is, thus, the way to go. There 

is a difference between all of the model 

hyperparameters. The behavior and performance of 

machine learning algorithms can be significantly affected 

by certain hyperparameters. As a machine learning 

professional, to swiftly achieve good results. The user 

was able to imitate duck feeding in two ways using this 

method: 

3.4.4.1 The Neural Operator 

One possible use case for the neural operator 

was to mimic the imprinting performance of the duck 

package. Nerves were the real actors in the imprinting 

performance. The dependency on neural operators is 

reduced as the speed of DPA's destination approach 

decreases. The following operator may have a gradual 

impact. 

 

3.4.4.2 Food Operator 

It was thought that the food operator may be 

useful for modeling the impact of feeding duck packs. 

Depending on the neural operator, the duck's feeding 

technique could be more or less reliant on the direction 

of the food. Here we present the mathematical model of 

the suggested approach. We cover the three primary 

functions of DPO here: I Following (i) the ducks' 

initialization as a population, (ii) their investigation of the 

area, and (iii) their collective foraging, they reach the 

following stage: the exploitation phase. Keep in mind 

that there are two guidelines to follow when gathering 

duck food. First rule of hunting: ducks with high hunting 

skills will stay around the center of the food supply. As a 

result, additional ducks will come closer to them, and the 

ducks in close proximity will likewise influence the 

updated location. No. 2: While foraging, every duck must 

swim directly to the source of food. Ducks follow the lead 

of the ducks surrounding them, the food's location, or 

both to decide where to go next.  

Due to the fact that the DPA has two separate 

repetition loops, is commonly used. 

During the D randomly reset with its site and 

velocity characterized as 𝑋𝑖 = [𝑥𝑖1 , … , 𝑥𝑖𝐷]  and 𝑉𝑖 =
[𝑣𝑖 , … , 𝑣𝐷] , where 𝑖 = 1, … . , 𝑁 . All the duck’s 

advancement their position 𝑋𝑖  and speed 𝑉𝑖  based on 

Eq. (3): 

𝑦𝑖
𝐼𝑛 = 𝑦𝑖

𝐼𝑛−1
× 𝑒−𝑅×𝐼𝑛 + 𝑟𝑎𝑛𝑑 × (𝑋𝐵 − 𝑋𝑖

𝐼𝑛−1
)  (3) 

𝑋𝑖
𝐼𝑛 = 𝑋𝑖

𝐼𝑛−1
+ 𝑉𝑖

𝐼𝑛    (4) 

𝑋i  R, on the other hand, is a fixed integer 

between zero and one that represents the neural 

component. In refers the existing number of iterations. 

𝑋𝐵 represents the worldwide ideal locations reached by 

assigning each duck's position thereafter This is the first 

iteration cycle. No more iterations are performed beyond 

the required number of iterations, and the neural 

operative is also terminated. It is handed over to the food 

service provider. X I, who endures to work with it. 

𝑋𝑐
𝐼𝑛−1

=
∑ 𝑋𝑖

𝐼𝑛−1
.𝑓(𝑋𝑖

𝐼𝑛−1
)𝑁𝐼𝑛−1

𝑖=1

𝑁𝐼𝑛−1.∑ .𝑓(𝑋
𝑖
𝐼𝑛−1

)𝑁𝐼𝑛−1
𝑖=1

    (5) 

𝑁𝐼𝑛 =
𝑁𝐼𝑛−1

2
     (6) 

𝑋𝑖
𝐼𝑛 = 𝑋𝑖

𝐼𝑛−1
+ 𝑟𝑎𝑛𝑑 × (𝑋𝑐

𝐼𝑛−1
− 𝑋𝑖

𝐼𝑛−1
)      (7) 

Whereas: 

𝑓(𝑋𝑖
𝐼𝑛−1

) =

{

1

𝑓𝑖𝑙𝑛𝑒𝑠𝑠(𝑋
𝑖
𝐼𝑛−1

)+𝜀
, 𝑎𝑖𝑚𝑖𝑛𝑔 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

𝑓𝑖𝑇𝑛𝑒𝑠𝑠(𝑋𝑖
𝐼𝑛−1

), 𝑎𝑖𝑚𝑖𝑛𝑔 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
    

(8) 

It will ultimately reach its final state, just like the 

meal worker does once the previous repetition has 

finished the required number of times. There are two 

operators working in tandem during both cycles. 

Because of this, the two equations up there need that 

the weights of the loop that combines their functions be 
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changed gradually, depending on the actual conditions. 

The specific method of improvement was shown to be: 

𝑁𝐼𝑛 = 𝑁𝐼𝑛−1 − 𝐻    (9) 

𝑉𝑖
𝑙𝑛 = 𝑉𝑖

𝑙𝑛−1
× 𝑒−𝑅×𝑙𝑛 + 𝑟𝑎𝑛𝑑 × [(1 − 𝑙𝑜𝑔𝑙𝑛 𝑚𝑎𝑥

𝑙𝑛 )(𝑋𝐵 −

𝑁𝑖
𝑙𝑛−1

) + 𝑙𝑜𝑔𝐼𝑛 𝑚𝑎𝑥

𝐼𝑛 × (𝑋𝑐
𝑙𝑛−1

− 𝑉𝑖
𝑙𝑛−1

)]   

       (10) 

𝑋𝑖
𝐼𝑛 = 𝑋𝑖

𝑙𝑛−1
+ 𝑉𝑖

𝑙𝑛    (11) 

Whereas H refers the sum of ducks 𝐼n max 

characterizes iteration. With the improvement of 𝐼n, the 

effect of 𝑋B on 𝑋𝑖
𝐼𝑛  reduces and 𝑋𝑖

𝐼𝑛  depends on 𝑋𝑐
𝑙𝑛−1

. 

In order to provide the best possible replication of the 

duck feeding process, the design incorporates the duties 

of two operators from an iterative loop and gradually 

changes the weights of the two operators depending on 

the actual data. 

As a flock, ducks create an engraving 

masterpiece. Group foraging for food also relies heavily 

on ducks' marking behavior. The marvel of engraving 

keeps the whole duck population in a constant pattern 

even when food sources are farther away. All of the 

ducks in the flock will be in a prime position to get to the 

location of the meal when it is nearby. There are two 

main types of foraging behaviours seen in ducks. The 

enchantment of engraving leads them to the one before 

it, and the discovery of food in equation (12) leads them 

to the one after that. 

Osmotic Energy Calculation for Duck Flock: 

 𝜋 = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 𝑎𝑛𝑑 𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀      (12) 

 

4. Results and Discussion 

To conduct the research, a computer with an 

Intel Core i5-7200 CPU and 8 GB of internal memory is 

utilized. The processor is accomplished of running at 2.7 

GHz. Running the procedures is a specific User Interface 

(UI) and the Jupyter (Python 3.7) Setting on Windows 

10, a 64-bit operating scheme. 

 

4.1. Validation Analysis of Proposed Classifiers 

on different classes of glaucoma 

Figures 5, 6, and 7 show the results of 

comparing the three datasets used to test the proposed 

classifier model on different metrics for glaucoma 

detection stages. 

In the below Figure 5, the visual representation 

of the projected model on the first dataset is illustrated. 

In the analysis of the first dataset, the advanced 

glaucoma test shows a sensitivity of 99.75, specificity of 

98.28, accuracy of 99.32, and precision of 92.19. 

For the early glaucoma test, the sensitivity is 

92.54, specificity is 97.02, accuracy is 98.9, and 

precision is 97.6. The moderate glaucoma test shows a 

sensitivity of 98.16, specificity of 99.17, accuracy of 

97.63, and precision of 99.47. 

The normal test demonstrates a sensitivity of 

97.53, specificity of 99.02, accuracy of 98.9, and 

precision of 99.85. Finally, the average test reports a 

sensitivity of 96.99, specificity of 98.37, accuracy of 

98.68, and precision of 97.27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Visual Representation of Projected model on First dataset 
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Figure 6. Graphical Representation on Second Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Visual Representation of numerous metrics on third Dataset 

Figure 6 shows a graphical illustration of the 

second dataset. The advanced glaucoma test had a 

sensitivity of 97.27, specificity of 98.75, accuracy of 

99.04, and precision of 98.25. The early glaucoma test 

had a sensitivity of 96.21, specificity of 97.05, accuracy 

of 99.48, and precision of 96.5. The moderate glaucoma 

test had a sensitivity of 98.03, specificity of 99.37, 

accuracy of 100, and precision of 99.67. The normal test 

yielded a sensitivity of 99.01, specificity of 98.47, 

accuracy of 99.79, and precision of 98.05. The average 

test yielded a sensitivity of 97.63, specificity of 98.41, 

accuracy of 99.57, and precision of 98.11. 

Figure 7 presents a visual representation of 

various metrics from the third dataset. The advanced 

glaucoma test showed a sensitivity of 98.25, specificity 

of 99.05, accuracy of 98.54, and precision of 97.15. The 

early glaucoma test showed a sensitivity of 96.71, 

specificity of 99.75, accuracy of 99.72, and precision of 

96.37. The moderate glaucoma test showed a sensitivity 

of 98.26, specificity of 98.63, accuracy of 99.25, and 

precision of 99.58. The normal test showed a sensitivity 

of 99.71, specificity of 98.47, accuracy of 98.02, and 

precision of 99.75. The average test resulted in a 

sensitivity of 98.23, specificity of 98.97, accuracy of 

98.88, and precision of 98.21. 

 

4.2. Performance Analysis of Projected 

Optimization with existing optimizers on three 

datasets 

Figure 8, 9 and 10 presents the validation 

analysis of projected optimizer with existing optimizer on 

three datasets in terms of different metrics. 
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Figure 8 below shows a graphic comparison of 

different optimizers using the first dataset. The analysis 

of the SGD models yielded the following results: training 

accuracy of 0.9231, validation accuracy of 0.9218, 

precision of 0.9349, recall of 0.9351, and an F-score of 

0.9350. The Adagrad models yielded training accuracy 

of 0.9556, validation accuracy of 0.9524, recall of 

0.9615, and an F-score of 0.9798. The DPOA models 

reported a training accuracy of 0.9993, validation 

accuracy of 0.9873, recall of 0.9946, precision of 0.9856, 

and an F-score of 0.9951. 

Optimizing the hyperparameters for XGBoost, 

LightGBM, and CatBoost can be challenging and 

computationally demanding due to the numerous factors 

that need consideration and the careful tuning required 

to prevent overfitting. The preprocessing requirements, 

particularly for handling categorical data, can add extra 

complexity to the modeling pipeline and limit the 

interpretability of the generated models. Furthermore, 

while these libraries offer some parallelism, fully utilizing 

distributed computing resources for large-scale model 

training may present difficulties. 

In the analysis of In Figure 9, we present the 

visual representation of various optimizers on the 

second dataset. In the analysis, the SGD models yielded 

training accuracy of 0.9429, validation accuracy of 

0.9521, recall of 0.9319, and F-score of 0.9233. The 

RMSProp models showed training accuracy of 0.9623, 

validation accuracy of 0.9685, recall of 0.9292, and 

validation accuracy of 0.9479. The Adam models yielded 

training accuracy of 0.9792, validation accuracy of 

0.9804, recall of 0.9672, and F-score of 0.9764. The 

DPOA models reported training accuracy of 0.9891, 

recall of 0.9905, F-score of 0.9828, and validation 

accuracy of 0.9861. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Graphical Comparison of various optimizer on first dataset 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Visual Representation of dissimilar optimizer on second dataset 
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Figure 10. Visual Representation of different models’ performance on third dataset. 

 

In the analysis of In Figure 10, we present the 

visual representation of different models' performance 

on the third dataset. In the analysis, the SGD models 

yielded training accuracy of 0.9290, validation accuracy 

of 0.9698, recall of 0.9367, and F-score of 0.9465. The 

Adamax models showed training accuracy of 0.9682, 

validation accuracy of 0.9789, recall of 0.9774, and F-

score of 0.9788. The Adam models achieved training 

accuracy of 0.9726, validation accuracy of 0.9875, and 

F-score of 0.9878. The DPOA models reported training 

accuracy of 0.9906, validation accuracy of 0.9926, recall 

of 0.9987, and F-score of 0.9906. CatBoost optimization 

can be slow due to its exhaustive search strategy. 

The results demonstrate the effectiveness of 

combining ResNet-based segmentation with advanced 

classification models (XGBoost, LightGBM, CatBoost) 

optimized by the Duck Pack Optimizer for glaucoma 

detection. The ResNet segmentation module 

successfully extracted critical features from fundus 

images, which significantly improved the classification 

accuracy across all glaucoma stages. Compared to 

single-stage classification models, our hybrid approach 

showed superior performance in sensitivity, specificity, 

and overall accuracy, emphasizing the importance of 

targeted feature extraction in medical imaging. 

Additionally, the Duck Pack Optimizer effectively 

fine-tuned hyper parameters, outperforming standard 

optimizers in terms of training efficiency and accuracy, 

particularly for complex medical datasets with high 

variability. This optimization reduced overfitting and 

improved model generalization, as observed in 

consistent performance across multiple datasets. 

However, while our approach demonstrated 

high accuracy, further validation on larger, diverse 

datasets is essential to confirm its robustness in clinical 

settings. Future work may also explore more refined 

multi-class classification models to detect various 

glaucoma stages. Overall, the proposed hybrid model 

and optimization framework represent a promising 

advancement for glaucoma screening, potentially 

improving early diagnosis and treatment outcomes. 

 

5. Conclusion and Future Work 

This study presents a hybrid model combining 

ResNet-50-based segmentation with advanced 

classifiers, optimized using the Duck Pack Optimizer, to 

improve glaucoma detection from fundus images. The 

integration of segmentation and classification enhances 

the model's accuracy, focusing on the optic disc and cup, 

which are essential for glaucoma diagnosis. 

Experimental results demonstrate high sensitivity, 

specificity, and accuracy across multiple datasets, 

validating the approach’s effectiveness in distinguishing 

glaucoma from healthy cases. The Duck Pack Optimizer 

further boosts performance by fine-tuning 

hyperparameters, addressing limitations of standard 

optimization methods and improving generalization 

across different data. 

Future work will focus on extending this model's 

applicability to larger, more diverse datasets to further 

validate its robustness in real-world clinical 

environments. Additionally, exploring multi-class 

classification for different stages of glaucoma could 

provide a more nuanced diagnostic tool. Incorporating 

other advanced deep learning architectures and 

metaheuristic optimization techniques may also 

enhance model efficiency and accuracy. Ultimately, this 

research aims to support early, reliable glaucoma 

screening, facilitating timely interventions to prevent 

vision loss. 
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