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Abstract: Software-defined network offers a programmable networking environment that redefines the management 

of conventional networking and can provide potential solutions for their well-known challenges. In SDN 

circumstances, energy becomes a major threatening factor that affects both the reliability of the network and the 

sustainability of its connections. Energy depletion in SDN is still a major concern considering the ever-changing 

network constraints and rapid growth in the number of networking devices. This research article introduces a novel 

energy-efficient branch-and-bound optimization (EE-BBO) algorithm, designed for large-scale software-defined 

networks to overcome the challenges faced by existing approaches. The objective of the EE-BBO algorithm is to 

minimize the energy consumption across the SDN networks and improve the network performance. The proposed 

algorithm computes the lower bounds for prioritizing nodes, classifies them based on their probable, and intelligently 

forwards packets to choose the most energy-efficient route. The algorithm is implemented on Mininet, using 

Floodlight as the SDN controller and OpenFlow as the communication protocol. The results of simulations showed 

that the proposed EE-BBO algorithm outperforms the current benchmarked methods in terms of energy consumption 

by 9-19%, packet loss by 15-28%, and enhancing network lifetime by 14-25%. 

Keywords: Software-Defined Network, Energy, Branch and Bound, Optimization, Network Lifetime 

 

1. Introduction 

Wireless sensor networks (WSNs) are 

progressively playing a substantial role in present-day 

networking. Conventional WSNs face a lot of challenges, 

[1, 2], due to the swiftly growing networking conditions 

and various networking devices. These challenges 

include energy consumption, limited computational 

power, scalability, heterogeneity, rigid network 

management, and challenges in regulating new 

technologies in the comeback to altering network 

requirements. Software-defined networks (SDN) [3]. [4], 

a revolutionary standard that provides real-world 

answers to the problems faced by WSNs, was 

developed as a result of the growth of software-based 

programmable networks. 

SDN's flexibility, centralized control, improved 

programmability, and efficient network administration 

have made it a vital element of many applications today 

[5, 6]. SDN architecture [7], includes three planes: the 

application plane, which is at the top, the control plane, 

which makes conclusions about data forwarding over the 

network, and the data plane, which manages data 

packet transmission among devices. Through 

centralization of network control and management, the 

SDN architectural design simplifies network 

administration and maximizes network resources by 

undertaking away the necessity for individual devices to 

manage network operations. Figure 1 [7], displays the 

simplified structure of SDN. 

Even though SDN has plentiful profits for WSNs, 

there are several weaknesses as well [8, 9]. 

Performance, architectural design, security, and energy 

efficiency are some of the main problems SDN 

expressions. From these, energy [10], is critical for 

preserving the nodes' lifespan, which is essential to keep 

the network running. The energy consumption of nodes 

is powerfully predisposed by data transmission, 

processing activities, and environmental boundaries. It 

is hard to grow the lifespan of SDN nodes due to their 

inadequate energy resources.  
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Figure 1. SDN architecture 

Taking these things into account, making an 

effective energy management strategy is central for SDN 

settings, particularly in large-scale applications.   

A novel energy-efficient branch-and-bound 

optimization (EE-BBO) algorithm is proposed in this 

research with the goal line of lowering energy 

consumption in software-defined networks, enhancing 

network performance, and extending network lifetime. 

To improve routing paths and decrease energy 

consumption, the EE-BBO algorithm uses branch-and-

bound optimization techniques in conjunction with 

"dynamic source routing" (DSR) [11] protocol. The 

following are the contributions made by the EE-BBO 

algorithm: 

 Initial Energy Calculation: During the packet 

broadcasting process, the algorithm computes 

the initial energy required by the source node to 

transmit and the energy required in the 

reception process by all the neighboring nodes.  

 Lower Bound Calculation: The EE-BBO 

algorithm further calculates the lower bounds of 

each node and prioritizes their selection. Then it 

computes the total energy consumption of node 

traversal along the selected path. 

 Energy Consumption During Forwarding: The 

algorithm computes the energy consumption of 

each node during the packet-forwarding phase. 

 Overall Energy Calculation: The total energy 

consumption of the routing process is 

determined by summing the energy levels of 

node broadcasting, traversal, forwarding, and 

finalization. 

These phases significantly enhance the energy 

efficiency of the proposed EE-BBO algorithm by 

ensuring the selection of optimal routing paths during the 

routing process in software-defined networks. 

The remainder of the paper is structured as 

follows: Section 2 presents an extensive review of 

different energy efficiency techniques in SDN. The 

problem formulation is presented in section 4. Section 4 

explicates the EE-BBO algorithm. Section 5 discusses 

the performance of the EE-BBO algorithm, with results 

compared against existing approaches. At last, section 
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5 concludes the research article by highlighting the key 

contributions and the scope for future improvements.  

 

2. Literature Review 

Many authors [10, 12, 13] have contributed to 

enhancing energy efficiency in SDN-based applications. 

This section critically reviews the major contributions 

aimed at improving energy efficiency in SDN. 

Iqbal et al. [14], developed a stochastic model 

for analyzing end-to-end delay in OpenFlow-based 

networks, addressing a gap in existing research on this 

topic. The methodology involves conducting Internet-

scale experiments on platforms like Mininet, GENI, and 

OF@TEIN, utilizing a log-normal distribution to model 

delays. Huin et al.[15], proposed an approach known as 

SENAtoR, which encompasses tunneling, traffic 

variation detection, and integer linear programming 

techniques to optimize energy consumption without 

compromising service quality.  

Vijaygokul et al. [16] address traffic congestion 

and packet loss in Software Defined Networking (SDN) 

by proposing a fuzzy logic-based method to reduce table 

flow occupancy. The methodology involves detecting 

large traffic flows and applying functions to 

professionally decrease packet loss.  

The interoperability of programmable network 

ideas, particularly SDN and NFV, in cloud-based 

LoWPANs such as 6LoWPAN and ZigBee was 

examined by Al-Kaseem et al. [17] By enlightening 

packet processing, letting down latency over active 

routing, and reducing the requirement for control packet 

exchanges, the SD-NFV technique advances end-to-

end interruption and makes 6LoWPAN networks more 

responsive and effective. 

The end-to-end delay in Software-Defined 

Networking (SDN) was inspected by Zhang et al. [18], to 

recognize the roots of delays in large-scale networks. 

The process requires generating an analytical model for 

delay, evaluating the effect of TCAM updates on packet 

delay, and calculating parameters associated with flow 

setup rates. The Naive Bayes method was used by EL-

Garoui et al. [19], to suggest a routing protocol that 

decreases end-to-end delay in smart city environments, 

particularly in intelligent transportation systems, by 

integrating Software-Defined Networking (SDN) and 

Machine Learning (ML). Through this technology, a 

substantial dataset is produced from open data in 

Montreal, processed for analysis, and then implemented 

into the RYU SDN controller.  

Priyadarsini et al. [20], observed into in what 

way to enhance route choice and considerably lesser the 

network's energy usage by merging an effective load-

balancing method, a sleep-active mode mechanism, and 

a heuristic-based routing algorithm. An offline-phase ant 

colony optimization algorithm was created by Torkzadeh 

et al. [21] to professionally poise the load and satisfy 

QoS requirements in crowded networks with little flow. 

Zhao et al. [22], presented PESD-DCN, a correlation-

aware flow consolidation technique that progresses 

scheduling and routing in SDN. It reduces state 

transitions, avoids link congestion, and decreases the 

need to wake idle devices, all of which grow energy 

efficiency. 

Akbar et al. [23], recommended a method that 

uses an adaptive switching mechanism built into an SDN 

controller to advance packet loss and delay in Internet of 

Things applications. By improving the communication 

routes between source and destination nodes, this 

method effectively depresses packet losses and end-to-

end delays. The method discovers Pareto-optimal 

pathways that strike stability among lowering 

transmission time and maximizing path dependability by 

using a multi-objective optimization algorithm. 

Additionally, the system model assurances that the 

selected routes satisfy quality of service (QoS) 

standards, which is vital for applications that are 

sensitive to delays. 

For Software-Defined IoT (SDIoT) networks, 

Saha et al. [24], projected a traffic-aware QoS routing 

system designed to meet the QoS needs of 

heterogeneous flows, mainly packets that are loss-

sensitive and delay-sensitive. The methodology 

calculates the finest routing paths while taking these 

QoS criteria into account consuming a greedy heuristic 

based on Yen's K-shortest paths algorithm. In order to 

match network topology with traffic demands and 

maximize energy consumption during periods of low 

traffic, Wang et al. [25], advised dynamic topology 

switching and reliability measures. 

Compared to round-robin and random methods, 

the server metric collection load balancing algorithm 

(SMC-LB), which was offered by Reddy et al. [26], 

reduces energy consumption by putting servers into 

sleep mode whereas they are not processing requests. 

The hybrid spreading load algorithm (HSLA), proposed 

by Galan-Jimenez et al.[27], minimizes network power 

consumption while maximizing link utilization in IP/SDN 

hybrid networks by solving a multi-objective optimization 

problem. Ghani et al. [28] optimize packet forwarding in 

routers using the Particle Swarm Optimization (PSO) 

based Weighted Round-Robin (psoWRR) algorithm to 

reduce packet loss and starvation, particularly for low-

priority packets. This approach involves simulating a 

multilevel queuing system where the PSO algorithm 

dynamically adjusts the weights of priority queues based 

on traffic conditions.  

Forghani et al. [29], proposed the krill herd 

metaheuristic algorithm (KHMA) an optimization-based 

approach to improve energy efficiency in SDN networks 

by effectively balancing the load. This algorithm collects 

virtual machine specifications, establishes network 

topology, checks the number of links required for 
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individual tasks, computes krill herd values, and selects 

the best virtual machine based on these values to 

compute load-balancing metrics and update the weights 

until all tasks are processed. 

Deo et al. [30], apply the flow statistics from 

OpenFlow switches to address bandwidth allocation and 

minimize packet loss in bursty traffic scenarios using an 

algorithm that leverages OpenFlow meters. This 

approach optimally allocates bandwidth to various 

Quality of Service (QoS) classes based on their current 

needs. However, a limitation is that while the algorithm 

guarantees initial minimum bandwidth allocation, it does 

not minimize packet loss in all cases. 

Various studies have aimed to optimize energy 

efficiency in distinct applications such as data centers 

[31], smart homes [32], and IoT applications [33]. These 

approaches leverage SDN capabilities, virtual networks, 

and optimization algorithms to reduce energy 

consumption and enhance network performance. The 

summary of this literature review is presented in Table 1. 

 

Table 1. Summary of the literature review 

Reference Techniques Highlights Findings Constraints 

[14] 

Stochastic model, 

log-normal 

distribution 

End-to-end delay 

analysis in OpenFlow-

based networks 

Log-normal distribution 

effectively models delay; 

validated through 

experiments on Mininet, 

GENI, and OF@TEIN 

Focused primarily on 

delay modeling; does 

not address energy 

efficiency 

[15] 

Energy-aware 

routing 

techniques 

Developing a SENAtoR 

with dynamic tunnel 

selection and one with a 

pre-configured set of 

tunnels 

Power conservation 

without compromising 

performance 

Insufficient investigation 

of energy efficiency and 

service quality effects 

across diverse network 

types 

[16] 

Fuzzy logic-

based method 

Reduces table flow 

occupancy in SDN 

Effectively minimizes 

traffic congestion and 

packet loss 

Applicability limited to 

SDN environments 

[17] 

SDN-NFV 

integration 

Interoperability in cloud-

based LoWPANs (e.g., 

ZigBee, 6LoWPAN) 

Enhanced end-to-end 

delay, reduced latency 

through efficient routing 

Focused on 6LoWPAN 

networks; less 

generalizability 

[18] 

Analytical delay 

model 

Investigated factors 

contributing to delays in 

SDN 

Quantified delay impact 

from TCAM updates and 

flow setup rates 

Limited scope to large-

scale SDN 

environments 

[19] 

SDN-ML 

integration (Naive 

Bayes) 

Routing protocol for 

smart cities and 

transportation systems 

Reduced end-to-end 

delay using datasets 

from real-world 

scenarios 

Heavy reliance on 

dataset quality for 

results 

[20] 

Load balanced 

techniques 

Energy-efficient load 

distribution with sleep-

wake cycles and 

heuristic routing 

Equilibrium between 

performance and energy 

optimization 

Validation is primarily 

required within SDN 

environments 

[21] 

Energy-aware 

routing 

techniques 

Two-phase routing 

utilizing Ant Colony 

Optimization 

Decreased energy 

consumption, improved 

link management, 

reduced network 

congestion 

Inadequate evaluation 

of load distribution 

effectiveness 

[22] 

Energy-aware 

routing  

PESD-DCN: Flow 

routing considering 

correlations 

Enhanced energy 

efficiency through 

minimization of active 

components 

Service quality 

implications not 

thoroughly examined 
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[23] 

Adaptive 

switching 

mechanism, 

multi-objective 

optimization 

Enhanced delay and 

packet loss in IoT 

applications 

Identifies Pareto-optimal 

paths balancing delay 

and reliability 

Dependent on QoS-

sensitive applications 

[24] 

Traffic-aware 

QoS routing, 

Yen’s K-shortest 

path 

Routing scheme for 

SDIoT 

Optimized routing for 

delay-sensitive and loss-

sensitive packets 

Greedy heuristic might 

not perform optimally in 

highly dynamic traffic 

[25] 

Topology driven 

techniques 

Dynamic topology 

switching and reliability 

measures for SDNs 

Optimized energy usage 

during low-traffic periods 

Insufficient assessment 

of broader applicability 

[26] 

Energy-aware 

routing 

techniques 

Adaptive load balancing 

employing SDN and 

linear programming 

Improved performance 

and efficient workload 

distribution 

Application limited to 

data center 

environments 

[27] 

Load balanced 

techniques 

HSLA for load 

balancing and energy 

minimization 

Suitable for large-scale 

topologies with efficient 

link deactivation 

Emphasis on the 

transition from 

traditional IP to SDN 

networks 

[28] 

PSO-based 

Weighted Round 

Robin 

Packet forwarding 

optimization in routers 

Reduced packet loss 

and starvation in priority 

queues 

May introduce additional 

processing delays 

[29] 

Load balanced 

techniques 

Krill herd meta-heuristic 

algorithm for SDN 

optimization 

Enhanced performance 

and reduced energy 

consumption 

Limited consideration of 

network heterogeneity 

[30] 

OpenFlow meter-

based algorithm 

Bandwidth allocation for 

bursty traffic 

Optimally allocates 

bandwidth to QoS 

classes 

Does not minimize 

packet loss in all 

scenarios 

 

These gaps highlight the need for a dynamic, 

scalable, and energy-efficient solution for SDNs that can 

address heterogeneous and large-scale environments. 

This necessitates the formulation of a problem that 

captures these challenges while providing a basis for 

innovation. The problem formulation, derived from these 

insights, is detailed in the following section. 

 

3. Problem Formulation 

The limitations and gaps identified in the 

literature review serve as the foundation for formulating 

the problem addressed in this research. In recent years, 

Software-Defined Networking (SDN) has emerged as a 

promising technology for enhancing the flexibility and 

efficiency of network management, particularly in large-

scale applications. However, as SDN scales, energy 

efficiency becomes a critical challenge due to the 

increasing demands on network devices, which must 

operate continuously to manage traffic routing, control, 

and data aggregation tasks. Although numerous 

approaches have been proposed to improve energy 

efficiency, most focus on minimizing active network 

components, optimizing routing paths, or balancing 

loads using various heuristic and optimization 

techniques. 

Despite these advancements, current 

methodologies primarily emphasize shortest-path 

routing or selective activation of high-utilization paths, 

often neglecting the optimality of path selection in terms 

of energy consumption. These limitations result in 

increased energy usage, higher packet loss rates, and 

degraded performance, particularly under high-load and 

diverse traffic conditions. 

Additionally, existing approaches often lack 

adaptability to heterogeneous network conditions and 

are generally constrained by issues related to scalability, 

load distribution efficiency, or applicability to specific 

environments. There is a pressing need for an SDN-

based energy-efficient algorithm that can balance loads 

across the network while minimizing packet loss and 

reducing delay, especially in large-scale and diverse 

applications. 

This research article aimed to develop an 

energy-efficient branch-and-bound optimization (EE-

BBO) algorithm for large-scale software-defined 

networks to overcome the challenges confronted by the 
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existing approaches. The detailed implementation of the 

proposed EE-BBO is presented in the next section. 

 

4. Proposed Methodology 

The idea of the proposed EE-BBO algorithm 

focuses on minimizing the energy consumption of 

software-defined networks during routing and elongating 

the network lifetime. The implementation of the 

proposed EE-BBO algorithm encompasses the following 

phases: 

 Initialization phase 

 Bound calculation phase, 

 Energy assessment and forwarding phase 

 Path finalization phase. 

 

4.1 Initialization phase 

The source node is found and earmarked as the 

starting point for the routing process during the 

initialization phase. The source node’s value is set to A. 

Next, the algorithm verifies whether the source node is a 

present node. If so, it appends itself to the routing path 

and disseminates a route request packet to its 

neighboring nodes. The destination node and the 

desired route information are included in this broadcast 

packet. This broadcasting process originates from the 

source node and alerts its neighbors to find a path to the 

destination. The total energy consumption during this 

broadcast is calculated as follows: 

𝐸𝑏𝑟 = 𝐸𝑡𝑥(𝑠𝑟𝑐) + ∑ 𝐸𝑟𝑥(𝑖)𝑛
𝑖=𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑠𝑟𝑐    (1) 

where, 

𝐸𝑡𝑥(𝑠𝑟𝑐) represents the energy transmission of 

the source node,  

𝐸𝑟𝑥(𝑖)  represents the energy required for 

reception by the neighboring nodes, 

𝑖 is the index for each neighboring node, 

𝐸𝑏𝑟  indicates the total energy consumption 

during the broadcast phase. 

 

4.2 Bound Calculation and Node Traversal 

In this phase, the lower bound of all nodes in set 

S is computed using a bounding procedure to prioritize 

which node should be explored first. This lower bound 

indicates the minimum feasible cost from the source 

node to the rest of the nodes in set S and is calculated 

as follows:: 

𝐿𝐵(𝑖) = min  (𝑐𝑜𝑠𝑡(𝑖, 𝑗) + 𝑐𝑜𝑠𝑡(𝑗, 𝑑𝑠𝑡))   (2) 

where, 

𝐿𝐵(𝑖) represents the lower bound for node (𝑖), 

𝑗 represents the neighboring node of (𝑖), 

𝑑𝑠𝑡 represents the destination node. 

Equation (2) computes the lower bound of 

node 𝑖, by considering the minimum value of the sum of 

the costs to move from node 𝑖, to neighboring node 𝑗 

and the cost from node 𝑗 to the destination. Based on the 

lower bounds, nodes in set SSS are sorted in non-

decreasing order, ensuring that nodes with the minimum 

cost (in terms of distance from the source) are prioritized. 

This process successively computes each newly 

generated node, relaying data packets or routing 

messages to subsequent nodes in the sequence. The 

energy consumed during node traversal is calculated as 

follows: 

𝐸𝑡𝑟 = ∑  𝐸𝑡𝑥(𝑖) +  𝐸𝑟𝑥(𝑖)𝑖∈𝑃      (3) 

where, 

𝐸𝑡𝑟 represents the energy for node traversal, 

 𝐸𝑡𝑥  represents the energy transmission of the 

source node, 

𝐸𝑟𝑥(𝑖)  represents the energy for reception by 

neighboring node, 

𝑃 is the set of paths. 

The algorithm updates the optimal path if the 

current node’s minimal cost falls below the overall 

maximum threshold, ensuring the selection of the most 

promising nodes for finding the optimal path. 

 

4.3 Energy assessment and packet forwarding  

The third phase involves computing the 

minimum threshold for the node under examination and 

setting an initial value for the peak energy level. The 

energy evaluation of the node is calculated using the 

following equation: 

𝐸𝑒𝑣𝑎𝑙(𝑖) = 𝛼 ×  
1

𝐿𝐵(𝑖)
+  𝛽 × 𝑒(𝑖)    (4) 

where. 

𝐸𝑒𝑣𝑎𝑙(𝑖)  represents the energy evaluation of 

node 𝑖, 

𝛼 , 𝛽  are coefficients representing the energy 

levels of node 𝑖, 

𝑒(𝑖) is the energy level of node 𝑖. 

The energy evaluation balances the energy 

level of node i, and its lower bound to the destination. 

The algorithm then identifies the node with the highest 

energy value in set S using the following equation: 

𝐸ℎ𝑒𝑣 = max 𝑒(𝑖) (𝑖 ∈ 𝑆)      (5) 

where, 

𝐸ℎ𝑒𝑣  Represents the highest energy value of 

node𝑖. 
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The total energy consumption during packet 

forwarding is computed as follows: 

𝐸𝑓𝑟 = 𝐸𝑡𝑥  (𝐸ℎ𝑒𝑣) + 𝐸𝑟𝑥(𝑛𝑒𝑥𝑡 𝑛𝑜𝑑𝑒)   (6) 

where, 

𝐸𝑓𝑟 represents the energy for packet forwarding, 

𝐸𝑡𝑥  (𝐸ℎ𝑒𝑣) is the energy consumption of the node 

with the highest energy value during packet 

transmission, 

𝐸𝑟𝑥(𝑛𝑒𝑥𝑡 𝑛𝑜𝑑𝑒)  Represents the energy 

consumed by the next receiving node during packet 

reception. 

 

4.4 Path Finalization 

In the final phase, all branching operations are 

completed, and the node with the highest energy 

capacity is identified. The algorithm sets a flag F to 0 and 

initializes it to 1. If the current node is the highest energy 

value node and F is 0, the path is broken. Otherwise, the 

optimal path is selected. The flag indicates whether the 

path is finalized as optimal or needs to be broken and 

rerouted. 

The total energy consumption for finalizing the 

path, including possible rerouting, is calculated as 

follows: 

𝐸𝑓𝑛 = 𝐸𝑡𝑟 + ∑ 𝐸𝑝𝑟𝑜𝑐𝑖∈𝑃𝑎𝑙𝑡 (𝑖)    (7) 

where, 

𝐸𝑝𝑟𝑜𝑐(𝑖) = 𝐸𝑓𝑑 + 𝐸𝑢𝑝𝑑𝑎𝑡𝑒, 

𝐸𝑓𝑛 is the finalize energy consumption, 

𝐸𝑡𝑟 is the energy for node traversal, 

𝑃𝑎𝑙𝑡 is the set of the alternate node path, 

𝐸𝑝𝑟𝑜𝑐(𝑖) is the sum of alternate energy paths of 

node 𝑖. 

Equation 7 calculates the total energy 

consumption of the routing process as the sum of the 

energy consumed by node i during traversal and the 

energy required for updates, including the evaluation of 

alternate paths and feasible rerouting paths. 

Finally, the total energy consumption of the 

routing process is computed as follows: 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑖) = 𝐸𝑏𝑟(𝑖) + 𝐸𝑡𝑟(𝑖) +  𝐸𝑓𝑑(𝑖) + 𝐸𝑢𝑝𝑑𝑎𝑡𝑒(𝑖) +

 𝐸𝑓𝑛(𝑖)        (8) 

where, 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑖)  Represents the total energy 

consumption of the routing process. 

By combining these measures, the proposed 

EE-BBO algorithm minimizes overall energy 

consumption during the routing process, which is crucial 

for extending the lifespan of software-defined networks.  

The proposed EE-BBO approach is outlined in Algorithm 

1 and the process flows are illustrated in Figure 3. 

Algorithm 1. EE-BBO Algorithm 

Input: 

src: Source node 

dst: Destination node 

S: Set of nodes 

e(i): Energy value of node i 

ic: Iteration counter 

hev: Node with the highest energy vae 

Output:  

Shortest path nodes from src to dst 

BEGIN 

// Initialization 

Set A ← src // Define source node as A 

IF current node = src THEN 

Add src to path 

Send route requests to neighboring nodes 

END IF 

// Bound Calculation and Node Traversal 

Determine lower bounds for each node in set S 

Sort nodes in S by ascending lower bounds 

FOR each node in S DO 

Explore new nodes in sequence 

Relay packets or route information to the next node 

IF new node’s lower bound < current node’s lower 
bound THEN 

Update path to include the new node 

 END IF 

END FOR 

// Energy Assessment and Packet Forwarding 

Evaluate the lower bound of the current node 

Set initial maximum energy level 

Find hev in S 

Forward route requests along the current path 

// Path Finalization 

Complete all branching operations 

Identify the node with the highest energy 

IF route is broken THEN 

Select an optimal alternative route 
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END IF 

End current process 

Reset all routing flags 

IF termination conditions are met THEN 

End the path 

ELSE 

Choose the next optimal route 

END IF 

END 

 The physical network architecture and topology 

of the proposed EE-BBO approach are illustrated in 

Figure 2. The data plane consists of multiple nodes, 

where S represents the source node and D represents 

the destination node. The source node S broadcasts a 

route request packet to all neighboring nodes Ni. It then 

computes the energy evaluation value for each node i in 

the network, which helps determine the priority of nodes 

for packet forwarding. Nodes with higher energy values 

are more favorable for forwarding. In Figure 2, the red-

colored path S-N14-N13-N12-D has a low cost and high 

energy value, making it the optimal path for forwarding 

packets. 

Figure 2. The physical network architecture of 

proposed EE-BBO. 

 

 

Figure 3. Process flow of EE-BBO algorithm 
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5. Results and Discussion 

This segment of the research article assesses 

the performance of the EE-BBO algorithm in terms of 

energy consumption across different node densities, 

packet loss, and network lifetime. The results are 

compared with established methods such as TSR [25], 

HSLA [27], and KHMA [29]. The simulation environment 

employed Mininet 2.2 [34], Floodlight 1.2 as the SDN 

controller, and OpenFlow 1.3 [35] for communication. 

Detailed simulation parameters are provided in Table 2. 

Table 2. Simulation setup 

Variables Measurements 

Nodes 250 

Links  164 

Switch  42 

Bandwidth  10 MB 

Rate  20 bps-250 kbps 

Delay  1-150 milliseconds  

Initial energy 2J 

Loss 0-15% 

Packet size 512 Bytes 

Threshold  5% 

Sample  10 

Simulation time  2000 (in seconds) 

Packet range 35 packets/s 

Figures 4(a)–4(e) present energy consumption 

trends for networks of varying sizes (50 to 250 nodes) 

using the proposed EE-BBO algorithm, compared to 

benchmarked approaches (KHMA, HSLA, TSR). The 

initial energy of each node is set to 2J, and the remaining 

energy is measured after completing packet 

transmissions and receptions. The x-axis represents 

simulation time, while the y-axis reflects energy 

consumption. The results indicate a significant reduction 

in energy consumption as the network size increases, 

demonstrating EE-BBO's scalability and efficiency in 

optimizing energy usage. This performance aligns with 

theoretical expectations, as the algorithm dynamically 

prioritizes energy-efficient paths.  

The EE-BBO algorithm and KHMA show 

comparable performance for higher node densities 

(150–250 nodes) and extended simulation times, 

primarily due to the saturation of network resources and 

the convergence of energy-efficient routing strategies in 

both models. However, EE-BBO’s energy-efficient 

branch and bound optimization framework dynamically 

adapts to changing network topologies and traffic 

conditions, unlike KHMA, which relies on static 

metaheuristic optimization. On average, EE-BBO 

achieves a 9% improvement in energy efficiency over 

KHMA, directly contributing to prolonged network 

lifetime. While EE-BBO and KHMA show similar 

performance in high-density networks, EE-BBO's 

deterministic optimization approach, lower 

computational overhead, and consistent energy 

efficiency gains across various configurations make it 

more suitable for dynamic and real-time SDN 

environments. 

Figure 4(f) highlights the average energy usage 

per node, further emphasizing EE-BBO’s energy-aware 

optimization. By employing branch and bound 

techniques, the algorithm identifies high-energy paths 

and reroutes data through efficient alternatives, 

balancing the load across nodes and avoiding 

overburdened routes. This approach minimizes energy 

depletion on critical nodes, reducing overall transmission 

energy while ensuring network longevity. Compared to 

KHMA, HSLA, and TSR, EE-BBO achieves total energy 

consumption reductions of 9%, 15%, and 19%, 

respectively, as shown in Figure 4(f). These results 

underscore the superior energy efficiency of EE-BBO, 

which is particularly crucial for real-world applications, 

such as IoT networks, where maintaining node energy is 

essential for extended operational lifetimes. By reducing 

energy consumption, EE-BBO supports more stable and 

long-lasting SDN deployments in large-scale, energy-

constrained environments. 

The proposed EE-BBO algorithm was also 

evaluated under varying traffic loads such as 50 Mbps 

(low), 100 Mbps (medium), and 150 Mbps (high). These 

loads were achieved by adjusting the packet generation 

rate in the simulation environment. As summarized in 

Figure 5, the algorithm maintains superior energy 

efficiency across all traffic conditions. Under low traffic 

conditions (50 Mbps), EE-BBO exhibited a 6% reduction 

in energy consumption. Under high traffic conditions 

(150 Mbps), it achieved similar reductions. Overall, the 

EE-BBO algorithm reduced energy consumption by 7%, 

13%, and 18% compared to KHMA, HSLA, and TSR, 

respectively. 

Packet loss is an influential metric for enhancing 

the performance of SDNs. It indicates the number of 

packets that are not successfully delivered against the 

total number of packets sent to the destination node. In 

an energy-constrained SDN environment, it is crucial to 

minimize packet loss which significantly avoids 

unnecessary packet retransmission in the network. The 

proposed EE-BBO algorithm reduces packet loss by 

instigating an energy-aware routing path that 

dynamically reroutes the traffic depending on the node's 

energy level and lower bound computations. By 

choosing a dynamically energy-aware routing path, the 

EE-BBO algorithm diminishes the congestion-based 

packet loss, minimizes packet retransmissions, and 

maximizes network performance. 

Figure 6, shows the percentage of packet loss 

attained by the EE-BBO algorithm against the different 

number of nodes ranging from 50 to 250 nodes. The EE-

BBO algorithm reduces the packet loss by 15%, 26%, 

and 28% compared to the existing approaches KHMA, 

HSLA, and RST respectively.  
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Figure 4. Average energy consumption vs different number of nodes 

 

 

(c) (d) 

(e) (f) 

(a) (b) 
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Figure 5. Energy consumption vs traffic load 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Packet loss (%) 

 

 

 

 

 

 

 

 

 

 

Figure 7. Energy Consumption vs propagation delay 
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Figure 8. Network Lifetime 

This reduction of packet loss minimizes the 

energy consumption for retransmission and fortifies the 

network performance and lifetime. 

Propagation delay significantly affects SDN 

performance, particularly in large-scale networks where 

communication between nodes spans multiple hops. 

The EE-BBO algorithm was evaluated under varying 

propagation delays, ranging from 10 ms (low) to 50 ms 

(high), to simulate diverse network environments. Figure 

7 shows that as propagation delay increases, energy 

consumption slightly rises due to prolonged routing 

decisions and packet retransmissions. 

However, EE-BBO reduces energy 

consumption by 7%, 14%, and 20% compared to 

benchmark algorithms across all delay conditions. 

Network lifetime, measured as the duration until 

the first node exhausts its energy, is a key indicator of 

sustainability in SDNs. The EE-BBO algorithm extends 

the network lifetime by leveraging energy-efficient 

branch and bound techniques that reduce energy 

consumption across the network. During the Initialization 

Phase, EE-BBO selects paths through nodes with higher 

energy, preventing early failures.  

To balance the energy consumption throughout 

the network, the bound calculation phase gives priority 

to routes with the least traversal energy. The Bound 

Calculation Phase prioritizes routes with minimal 

traversal energy, balancing energy usage across the 

network. Then, the energy assessment phase 

dynamically reroutes the packets through higher-energy 

levels paths to evade the low-energy paths that cause 

the node diminution. The EE-BBO algorithm selects an 

energy-aware routing path, ensures reliable 

transmission between the source and destination in the 

path finalization phase, and reduces unforeseen path 

failures.  

The network lifetime achieved by the proposed 

EE-BBO algorithm is presented in Figure 8. The EE-BBO 

algorithm implemented the branch and bound 

techniques which dynamically reroute the routing path 

according to the energy levels of the nodes. EE-BBO 

algorithm effectually stretches the network lifetime by 

complementing the energy levels throughout the 

network. The outcomes divulged that the EE-BBO 

algorithm elongates the network lifetime by 14%, 19%, 

and 25% compared to KHMA, HSLA, and TSR 

respectively.  

 

6. Conclusion 

The research article introduces a pioneering and 

energy-efficient branch-and-bound optimization (EE-

BBO) algorithm intended to improve the SDN network 

life span, reliability, and overall performance of large-

scale SDN environments by reducing energy 

consumption. The first significant contribution of EE-

BBO involves choosing nodes and computing from the 

source to its broadcast by leveraging the plausibility of 

neighboring nodes. After that, it computes the lower 

bound to prioritize nodes and dynamically forward 

packets. Following this, the EE-BBO algorithm computes 

the total energy consumed during packet forwarding. At 

last, the proposed EE-BBO algorithm computes the total 

energy consumption of the routing process by 

accumulating the energy levels from node broadcasts, 

traversal, forwarding, and finalization. The EE-BBO 

algorithm successfully reduces total energy 

consumption throughout the routing process by featuring 

these strategies. 

The findings revealed that the proposed EE-

BBO algorithm outperforms the current benchmarked 

methods. The EE-BBO algorithm reduces packet loss by 

15%, 26%, and 28% when compared to KHMA, HSLA, 

and TSR, respectively. Additionally, it reduces overall 

energy consumption by 9%, 15%, and 19%, and 

improves network lifetime by more than 14%, 19%, and 

25% compared to KHMA, HSLA, and TSR, respectively. 

The effectiveness of the proposed EE-BBO algorithm in 

enhancing energy efficiency, reliability, and longevity 
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makes it a promising solution for large-scale SDN 

environments. The proposed algorithm focuses on 

minimizing energy consumption in SDN networks rather 

than addressing other Quality of Service (QoS) 

parameters. Future work will aim to enhance the QoS 

parameters to improve network performance under 

dynamically changing conditions. 
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