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Abstract: Colorectal Cancer (CRC) is the main reason for cancer-linked morbidity and death globally, and early 

recognition has an important responsibility in enhancing patient endurance rates. Detecting polyp’s precursors to 

CRC significantly reduces mortality when identified in the early stages. The data is gathered from endoscopic video 

data from publicly available datasets. The preprocessing pipeline includes Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) to enhance image contrast, followed by Histogram of Gradients (HOG) for feature extraction. 

This research introduces a framework for concurrent polyp detection in endoscopic videos utilizing advanced 

computer vision techniques, specifically the Adaptive Masked Cuttlefish Region Convolve NeuroNet (AMC-RCN). 

This hybrid model integrates the strengths of Mask Region Convolve NeuroNet (R-CNN) and Adaptive Cuttlefish 

Optimization (ACFO) to achieve precise and efficient polyp detection. The Mask R-CNN component utilizes Region 

Proposal Networks (RPN) to accurately locate polyps, generating bounding boxes and pixel-wise segmentation 

masks. The ACFO algorithm further refines the model by optimizing hyper-parameters, improving segmentation 

boundaries, and selecting the most relevant features from the endoscopic frames, ensuring optimal performance. 

The AMC-RCN framework effectively handles small and irregular polyps, ensuring high segmentation (98.02%), 

precision (97.91), F1-score (96.97%), and recall (97.07%) even in complex and challenging scenarios. The model is 

evaluated on prominent video datasets, providing a comprehensive set of endoscopic video footage for rigorous 

testing. The framework demonstrates superior detection accuracy, faster training convergence, and robust 

performance in clinical applications. 

Keywords: Polyp Detection, Endoscopic Videos, Advanced Computer Vision, Adaptive Masked Cuttlefish Region 

Convolve NeuroNet (AMC-RCN), Colorectal Cancer 

 

1. Introduction 

The Gastrointestinal Tract (GT) is the main 

digestive tract of human beings. It comprises mouth, 

throat, esophagus, stomach, small and large intestines, 

and anus. This organ performs various critical activities 

in the human system, such as absorption, digestion, and 

evacuation. The GT is divided into two parts, including 

the lower and upper parts. The upper digestive system 

includes the mouth, esophagus, stomach, and small 

intestine, which are responsible for first digestion. The 

lower GT incorporates the intestines and the abdomen, 

which are important for absorbing water and eliminating 

waste [1]. The GI tract is sensitive to several pathologic 

situations, such as infections and sickness that progress 

and develop into hazardous tumors. Cancer refers to the 

uncontrolled development and division of bodily cells. 

This causes aberrant cell formation and separation in GI 

tract tissue, resulting in tumors. This is known as a colon 

tumor. Cancer remains the most frequent and main 

cause of death globally [2]. GI tract tumors are a 

substantial subset. Approximately 153,020 people are at 

risk of developing Colorectal Cancer (CRC), with a 

projected 52,550 deaths. Early detection of CRC leads 

to effective treatment options [3]. Regular screening of 

at-risk populations is necessary to identify early 

symptoms of cancer, such as polyps. Gastric polyps are 

irregular developments that protrude from the mucosal 

surface. Early identification of polyps is crucial for cancer 

screening and treatment, leading to improved survival 

rates, less morbidity, and lower costs. In the 

contemporary world, it presents a significant difficulty. 

Stomach cancer made up 33% of all instances during 

the preceding five years, while CRC accounted for 63% 

[4]. CRC has several stages, with stage IV being the 

most dangerous and having only a 3% chance of 

survival. Surprisingly, 95% of patients have overcome 

the early stage. To effectively treat CRC, precancerous 

abnormalities must be identified and removed. Finding 

colon polyps is particularly crucial since they later 
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progress to CRC. To reduce the fatality rate, it is crucial 

to actively pursue early detection of CRC. The urgency 

of taking action highlights the need for forceful and 

aggressive measures to deal with this issue head-on [5]. 

Proactive patient monitoring relies heavily on the 

colonoscopy process since it seeks to identify 

abnormalities early. This advanced method is especially 

important for detecting inflammation in the colon and 

rectum by offering a thorough assessment. Patients are 

strongly advised to have a colonoscopy by 

gastroenterologists and endoscopists, who use 

advanced camera equipment to ensure accuracy [6]. It 

is crucial to accurately detect polyps, which are 

abnormal tissue growths in the GT, particularly in the 

colorectal region, to encourage proactive health 

management and prevent CRC from progressing to 

more severe stages. Colorectal polyps are classified into 

three sizes: tiny (≤ 5mm), medium (6-9mm), and large (≥ 

10mm). Larger polyps are typically discovered and 

removed during standard endoscopic procedures. There 

are three types of polyps: hyperplastic, adenomatous, 

and serrated. Adenomatous polyps are more similar to 

cancer, making them a cause for concern. The risk of a 

polyp transforming into cancer is proportional to its size 

and degree of dysplasia [7]. Currently, 

gastroenterologists use endoscopic methods to 

manually diagnose polyps. Early diagnosis and removal 

of polyps are critical for cancer prevention. Regular 

screening is crucial for those aged 45 and above in 

healthcare systems. By 2050, the worldwide populace 

aged 45 and over is expected to achieve 52.5%, up from 

43.8% today. Manual CRC screening for a large 

population is not a practical solution due to operator 

proficiency affecting accuracy. Research is being 

performed to build Continuous Ambulatory Peritoneal 

Dialysis (CAPD) techniques that detect polyps and 

provide secondary opinions in addition to 

gastroenterologists. Various disease detection 

technologies have limitations in precision and speed, 

especially for real-time detection. Currently, combining 

AI-based detection systems with existing endoscopic 

equipment requires additional hardware [8]. However, in 

the future, these systems will be integrated directly to 

produce a small disease detection system powered by 

Artificial Intelligence (AI). AI is at present commonly used 

to create automated systems for polyp classification, 

identification, and segmentation. Effective polyp 

detection algorithms require strong handling of 

fluctuating polyp imaging. These systems should have 

low polyp miss rates and provide real-time identification 

for therapeutic applications. Additionally, they must be 

able to discriminate between polyps and related 

structures, such as air bubbles, colon folds, and blood 

arteries. Efforts to improve accuracy and reduce miss 

rates for small or miniature polyps continue to be a 

priority in polyp detection research. New techniques, like 

enhanced activation functions, transfer learning, data 

augmentation, and feature optimization, have improved 

frameworks by addressing the issue of limited training 

data [9]. Detecting polyps utilizing AI and other detectors 

has enhanced, but achieving superior accuracy rates 

while preserving concurrent presentation remains a 

complexity. Numerous techniques survive for 

categorizing, distinguishing, and segmenting gastric 

polyps, according to the literature review. While a huge 

evolution has been completed, additional effort is 

required to process and improve current methods for 

medical procedures. There is currently no one measure 

to estimate object detection approaches based on 

accuracy, resource consumption, and speed. A 

requirement of frequent metrics borders precise 

assessments among models. The research highlights 

the significance of improving accuracy and robustness 

for concurrent polyp detection. Current techniques have 

diverse degrees of accuracy, and their concurrent 

relevance presents substantial trouble. Bridging the 

accuracy-speed gap is significant in assuring these 

methods' realistic applicability in experimental 

surroundings. Advancements in methods and algorithms 

strike an improved stability among precision and 

concurrent capabilities, opening up novel potential for 

future research in concurrent polyp recognition [10]. The 

research objective is to generate a superior concurrent 

polyp detection framework for endoscopic videos to 

improve segmentation accuracy, optimize trait selection, 

and efficiently identify small and irregular polyps. This 

research aims to improve early CRC detection by 

Adaptive Masked Cuttlefish Region Convolve Neuronet 

(AMC-RCN), eventually leading to higher detection 

accuracy and consistent experimental application. 

 

1.1 Highlights of the Research 

CRC remains a main source of cancer-

associated death, with early recognition having an 

essential function in enhancing patient endurance rates. 

The research highlights are given below: 

 The research goal is to develop a concurrent 

polyp detection system for endoscopic videos 

utilizing advanced computer vision techniques 

to enhance early CRC diagnosis and patient 

endurance rates.  

 The data is gathered from endoscopic video 

datasets.The data is pre-processed utilizing 

Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) to improve image 

contrast and Histogram of Gradients (HOG) for 

feature extraction to improve the visibility and 

detection of polyps. 

 The research establishes the AMC-RCN system 

that combines mask R-CNN for polyp 

localization and ACFO for hyper-parameter 

tuning and multi-scale processing. 

 The proposed method achieves superior polyp 

detection accuracy, faster training convergence, 

and robust segmentation performance, 
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effectively handling small and irregular polyps in 

complex endoscopic scenarios. 

The AMC-RCN framework significantly 

improves concurrent polyp recognition in endoscopic 

videos, demonstrating high clinical applicability and 

potential for enhancing early CRC diagnosis, ultimately 

reducing mortality rates.  

The remaining research is prepared as follows: 

Section 2 summarizes the interrelated articles. Section 3 

provides the suggested technique. Section 4 

demonstrates the research findings. Section 5 gives the 

discussion and Section 6 summarizes the research's 

conclusion. 

 

2. Literature review  

This section summarizes the traditional 

approaches and advancements in polyp detection, 

focusing on recent DL techniques. It highlights the 

strengths and limitations of current systems using 

endoscopic video. Table 1 demonstrates the outline of 

the traditional works on early detection of polyps. 

 

Table 1. Outline of the related polyp detection 

Author  Objective  Technique used Performance metrics Limitation 

Krenzer et 

al., (2023) 

[11]  

Open-source 

automated polyp 

detection system 

You Only Look Once 

(YOLOv5) (adv.), 

Region-Enhanced 

Progressive Pooling 

(REPP) and 

concurrent-REPP 

The REPP achieved 

higher precision and an 

F1 score of 90.24 

Dataset bias, latency, 

no clinical trials, over-

reliance, and 

regulatory challenges 

Jha et al., 

(2021) [12] 

Automatic recognition 

and segmentation of 

polyps 

Colonoscopy 

Segmentation Network 

(ColonSegNet) 

Superior trade-off 

between accuracy 

(0.8000), Intersection 

over Union (IoU) 

(0.8100), and speed 

(182.38 Frames Per 

Second (FPS)) 

Reproducibility and 

fair comparisons 

Lee et al., 

(2020) [13] 

Automatic polyp 

detection system 

Convolutional Neural 

Network (CNN) and 

Long Short-Term 

Memory (LSTM) 

The technique 

achieved 92.5% 

accuracy on dataset A, 

89.1% on dataset B, 

and 91.3% on dataset 

C 

Requires 

improvement in real-

time video processing 

and generalization 

across diverse 

populations 

Nogueira-

Rodríguez 

et al., (2022) 

[14] 

Real-time polyp 

detection 

YOLOv3 The system achieved 

an F1 score (0.88) 

Limitations in 

detecting flat polyps 

and small sizes. 

Poon et al., 

(2021) [15] 

Colorectal neoplasm 

localization 

AI-Endoscopist (AI-

doscopist) 

It achieved 96.9% 

sensitivity in locating 

polyps 

Real-time adaptation 

Yu et al., 

(2022) [16] 

Polyp lesion detection Single Shot MultiBox 

Detector (SSD) + 

Instance Tracking 

Head (ITH) 

The model achieves 

91.70% mAP and 

92.50% accuracy at 66 

FPS 

Challenges in fine-

grained tracking 

persist 

Livovsky et 

al., (2021) 

[17] 

Detection of elusive 

polyps 

Deep Ensemble 

Expert-based Polyp 

detection 2 (DEEP2) 

It achieved 97.1% 

sensitivity, detecting 

additional polyps 

missed by 

endoscopists 

Is need further 

validation 

Si et al., 

(2022) [18] 

Improve 

computational power 

YOLOv5-Lite-Prune + 

EfficientNetLite 

The model achieves 

over 30 FPS with 

reduced parameters 

Despite efficiency 

improvements, 
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in the polyp detection 

task 

and computational 

complexity 

deployment on ultra-

low-power devices 

Liu et al., 

(2024) [19] 

Tiny polyp recognition 

from endoscopic video 

Swin Transformer enhanced recognition 

precision by 7%, recall 

by 7.3%, and average 

accuracy by 7.5% 

Struggles with high 

computational costs 

Wu et al., 

(2021) [20] 

Detect gastric cancer 

in an early stage 

CNN Experts in sensitivity, 

achieving 92.8% 

accuracy 

False positives and 

reliance on 

retrospective data 

Li et al., 

(2023) [21] 

Real-time polyp 

detection 

Enhanced LSTM (E-

LSTM) 

Results showed higher 

accuracy than standard 

LSTM 

Computational 

complexity and 

reliance on large 

labeled datasets 

He et al., 

(2023) [22] 

Nasopharyngeal 

carcinoma (NPC) 

detection 

YOLO The model achieved 

0.977 precision and 

52.9 FPS 

Reduced 

performance on 

external data 

Fitting et al., 

(2022) [23] 

Preclinical 

assessment of CADe 

systems in 

colonoscopy 

YOLOv5 Achieved higher 

sensitivity (54% vs. 

48.1%) and faster FDT 

(217ms vs. 1050ms) 

Dataset diversity and 

real-world validation. 

Sharma et 

al., (2023) 

[24] 

Automate the 

extraction of key 

frames from 

colonoscopy videos to 

improve CRC 

prediction.  

YOLO-based 

Colorectal Lesion 

Detection (YcOLOn) 

The evaluation showed 

a 96.3% reduction in 

frames and improved 

detection performance. 

Reliance on specific 

datasets and the 

need for long-term 

validation 

Lau et al., 

(2024) [25] 

Adenoma Detection 

Rate (ADR) among 

endoscopists-in-

training 

Endoscopy AI Device 

(ENDO-AID) 

Significantly increased 

overall ADR (57.5% vs 

44.5%) 

lack of image 

enhancement 

Fu et al., 

(2024) [26] 

polyp detection during 

endoscopy 

Dual-Pyramid and 

Dual-Modality Polyp 

Network (D2polyp-

Net) 

Experiments showed 

superior accuracy 

real-time clinical 

deployment 

Existing polyp detection approaches confront 

issues such as dataset bias, computational complexity, 

real-time processing, and generalization across 

heterogeneous populations. Many rely on historical data, 

lack clinical validation, and have difficulty recognizing 

tiny and flat polyps. Furthermore, significant computing 

costs and deployment constraints impede real-time 

adaption and large-scale clinical implementation. 

 

3. Methodology  

The data is gathered from the polypGen video 

sequence dataset. The data is preprocessed using 

CLAHE to improve image contrast and HOG for feature 

extraction to remove the edge patterns. The AMC-RCN 

detects polyps in endoscopic videos in real time using 

Mask R-CNN and ACFO. It improves segmentation 

accuracy with RPN that adapts convolutional filters and 

optimizes borders with ACFO. Figure 1 shows the 

methodological flow. 

 

3.1 Data set  

The data is gathered from the PolypGen Video 

Sequence dataset from Kaggle [27]. The dataset 

includes 1,537 images, 2,225 video series, and 4,275 

negative outlines. It is a collection of mixed residents, 

endoscopic structures, and specialist comments from six 

medical centers. The video data is converted into image 

frames for better polyp detection.  

 

3.2 Data preprocessing  

The gathered data images are contrast-

enhanced using CLAHE. The CLAHE approach controls 

a tiny portion of the image known as a tile.  
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Figure 1. Methodological flow. 

 

 

 

 

 

 

 

 

 

Figure 2. CLAHE outcomea) original image and b) preprocessed image. 

Each tile's contrast is corrected to ensure that 

the histogram created matches the prescribed profile. 

The closest tiles are linked via bilinear exclamation. This 

procedure ensures that the merged tiles seem smooth. 

The approach is described as Equation (1). 

𝛽 =
𝑁

𝑀
 (1 +

𝛼

100
 (𝑡𝑚𝑎𝑥 − 1)   (1) 

𝛽 denotes the border significance (clip limit), 

changeable N is the region dimension, 𝑀denotes the 

grey-level assessment, and 𝛼is the cut-off feature, which 

adds a histogram border with a rate between 1 and 100. 

𝑡𝑚𝑎𝑥 is the highest permitted angle. This optimizes local 

contrast, reduces over-amplification, improves feature 

extraction, normalizes illumination, increases model 

performance, maintains textural features, and assures 

robustness. Figure 2 shows the preprocessing outcome: 

a) original image and b) preprocessed image. 

 

3.3 Feature extraction 

The contrast-enhanced data features are 

extracted using HOG. In this process, the images are 

first divided into defined parts or cells, which are then 

grouped into blocks. Equations (2) and (3) are used 

within each block to calculate the gradient's magnitude 

and direction. 

h = √hw(v, u)2 + hz(v, u)2    (2)  

θ = arctan
hw(v,u)

hz(v,u)
     (3) 

ℎ𝑤(𝑣, 𝑢)is the incline in the straightway at pixel, 

ℎ𝑧(𝑣, 𝑢) is the incline in the upright way at pixel, and ℎ 

indicates a strong edge. 𝐴𝑟𝑐𝑡𝑎𝑛Computes the angle of 

the ascent vector, and 𝜃 is the track of the significant 

intensity change. A feature vector is formed from the 

distribution of unsigned gradient orientations inside each 

cell of the block, weighted by their magnitudes. The 

descriptor for every block, represented as  E(p) , is 

created by normalizing and conceding these vectors. 

The integer of blocks in the image is designated by n 

where p varies from 1, 2, 3, … . , n. These building blocks 

are essential parts of the cancer detection system.  

Figure 3. HOG outcome. 

The key points matrix, E(i) =  E(p) , is then 

created by separately extracting each block descriptor, 

E(p)to creates E(i) belongs to E(i) ∈ Rn×c, i = 1, 2, 3, … , m 
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where i stands for each image sample in the data m for 

the sum of images and d for the number of elements in 

the block descriptor. Equation (4) shows us d 

significance. 

𝑑 = 𝑏𝑖𝑛𝑠 × (𝐶𝑃𝐵)2    (4) 

The variable 𝑏𝑖𝑛𝑠  represented the quality of 

gradient orientations, whereas 𝐶𝑃𝐵  indicates the 

number of cells per block in this instance. This improves 

polyp detection by collecting local texture and edge 

patterns, which are essential for identifying lesions. 

Figure 3 denotes the outcome of feature extraction. 

 

3.4 Polyp detection using Adaptive Masked 

Cuttlefish Region Convolve NeuroNet (AMC-

RCN) 

AMC-RCN detects polyps in endoscopic videos 

in real time using Mask R-CNN, ACFO, and RCN. It 

improves segmentation accuracy with RPN that adapts 

convolutional filters with RCN and optimizes borders 

with ACFO. 

 

3.4.1 Mask R-CNN 

The feature-extracted data is forecasted using 

mask R-CNN. It is initiated from the faster R-CNN 

approach. Faster R-CNN creates a quality map from 

effort images. The Regional Proposal Network (RPN) 

identifies regions in images that contain objects. The 

regional proposals are aggregated and estimated 

among specified classes. During polyp detection, R-

CNN uses a two-step method. The initial phase 

incorporates using the local request system to establish 

the bounding boxes of the targets (RPN). Utilizing the 

Region of Interest (ROI)support process determines the 

mask for all targets in the second phase. In mask R-

CNN, the function of the loss value is minimized using 

Equation (5). 

𝐾 =  𝐾𝑐𝑙𝑎𝑠𝑠 + 𝐾𝑏𝑜𝑥 + 𝐾𝑚𝑎𝑠𝑘     (5) 

In faster R-CNN, 𝐾𝑐𝑙𝑎𝑠𝑠  and 𝐾𝑏𝑜𝑥  are 

acknowledged as comparable words. An Equation (6) 

and (7) defines these terms.  

𝐾𝑐𝑙𝑎𝑠𝑠 + 𝐾𝑏𝑜𝑥 =  
1

𝑀𝑐𝑙𝑠
∑ 𝐾𝑐𝑙𝑠𝑗 (𝑜𝑗 , 𝑜𝑗

∗) +

 
1

𝑀𝑏𝑜𝑥
∑ 𝑜𝑗

∗𝑀𝑗
𝑠𝑚𝑜𝑜𝑡ℎ(𝑠𝑗 , 𝑠𝑗

∗),      (6) 

𝐾𝑐𝑙𝑠({(𝑜𝑗 , 𝑜𝑗
∗)}) =  −𝑜𝑗

∗ log 𝑜𝑗
∗ − (1 − 𝑜𝑗

∗ log(1 − 𝑜𝑗
∗))  (7) 

𝑀  represents the total number of objects and 

bounding boxes, 𝑜𝑗  is a classification score and the 

ground truth label 𝑜𝑗
∗. 𝑠𝑗 is the forecasted coordinates and 

𝑠𝑗
∗  is the opinionprecision coordinates. 𝑀𝑗

𝑠𝑚𝑜𝑜𝑡ℎ is the 

smooth loss applied to bounding box regression. The 

loss of mean neutral cross-entropy, 𝐾𝑚𝑎𝑠𝑘, is determined 

by Equation (8). 

𝐾𝑚𝑎𝑠𝑘 =  
1

𝑛2
∑ [ 𝑥𝑗𝑖𝑙𝑜𝑔𝑝𝑥𝑗𝑖

𝑙
0≤𝑗,𝑖 ≤𝑛 +  (1 −

𝑥𝑗𝑖) log(1 − 𝑥𝑗𝑖
𝑙 )]      (8) 

Where, 𝑛 denotes the dimension of the image, 

𝑥𝑗𝑖  is the ground truth pixel, and 𝑝𝑥𝑗𝑖
𝑙  represents the 

forecasted probability of a polyp. Mask R-CNN improves 

polyp detection by creating precise bounding boxes and 

pixel-wise segmentation masks, resulting in accurate 

localization, enhanced feature extraction, and strong 

performance in real-time detection. 

 

3.4.2 Adaptive Cuttlefish Optimization (CFO) 

The ACFO algorithm is used to optimize 

parameters 𝐾𝑐𝑙𝑎𝑠𝑠 , 𝐾𝑏𝑜𝑥 , 𝑎𝑛𝑑 𝐾𝑚𝑎𝑠𝑘  for more accurate 

validity evaluation. ACFO is a meta-heuristic bio-inspired 

optimization algorithm to identify the optimal subset of 

characteristics. This simulates the cuttlefish's color-

enhancing habit. The ACFO algorithm relies on 

reflection and visibility to discover optimal solutions. 

Reflection mimics light reflection, while visibility mimics 

similar patterns. The ACFO technique ranks dataset 

features according to their location before selecting the 

best subset using Principal Component Analysis (PCA) 

components. A ranked array ( 𝑟𝐴 ) is defined, and an 

algorithm creates a population (𝑜) of 35 solutions, each 

with between 3 and 45 features. Each solution (𝑜𝑗 ) is 

separated into two subsets: unselected and selected, to 

avoid overlap. The best solutions are saved in 𝐵𝑤𝑏𝑆and 

𝑏𝑆 , with 𝑏𝑆  always having 10% fewer features than 

𝐵𝑤𝑏𝑆 . The search approach then refines feature 

selection using reflection (𝑄) and visibility (𝑈) stages, 

which include six scenarios. 

 

3.4.2.1 Scenario 1 and 2 

The method sorts the inhabitants ( 𝑜 ) in a 

downward array based on robustness scores. After that, 

a 𝑛𝑆𝑗  is created from all resolution  𝑜𝑗 , where  𝑗 =

1,2,3, … . . 𝑙 and (𝑙) is anaccidentally produced numeral 

digit among (0 and 𝑀/2). Equations (9-11) modify the 

ACFO algorithm's (𝑄) and (𝑈) operations for these two 

scenarios. 

𝑛𝑆𝑗 = 𝑄𝑗 ∪ 𝑈𝑗    (9) 

𝑄𝑗 = 𝑟𝑆 [𝑄]∁ 𝑜𝑗 . 𝑠𝐹     (10) 

𝑈𝑗 = 𝑟𝑆 [𝑈]∁ 𝑜𝑗 . 𝑢𝐹     (11) 

𝑟𝑆 is the random subset, and 𝑢𝐹  is the 

unselected features. These subsets are produced 

randomly from both unselected and chosen features. (𝑄) 

and (𝑈)are computed as follows in Equations (12 and 

13). 

𝑄 = 𝑟𝑎𝑛𝑑 (0, 𝑜𝑗 . 𝑆𝑖𝑧𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)    (12) 

𝑈 =  𝑜𝑗 . 𝑆𝑖𝑧𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 −  𝑄    (13) 
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3.4.2.2 Scenario 3 and 4 

To simulate these instances, Equations (14- 16) 

are used to create a new subset from the best subset. 

The feature 𝑠is treated as a numeral generated by the 

user. The t 𝑠value is situated at 5 based on extensive 

investigational testing. The following stage involves 

calculating fitness values for each new subset. The last 

phase is to substitute the best subset. Combine selected 

features into a new subset if its fitness value exceeds 

that of the best subset. 

𝑄 = 𝑏𝑆. 𝑆𝐹 [𝑄]     (14) 

𝑈 = 𝑏𝑆. 𝑢𝐹 [𝑄]    (15) 

𝑛𝑆 = 𝑄 ∪ 𝑈      ((16) 

𝑄 represents the feature index to remove from 

the selected feature, whereas 𝑈 represents the feature 

index to choose from the unselected feature. 𝑄 and 𝑈 is 

calculated using Equations (17 and 18). 

𝑄 = 𝑟𝑎𝑛𝑑 (0, 𝑏𝑆. 𝑆𝑖𝑧𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)    (17) 

𝑈 =  𝑏𝑆. 𝑆𝑖𝑧𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 −  𝑄    (18)  

 

3.4.2.3 Scenario 5 

To simulate this instance, start by generating a 

new subset from 𝐵𝑤𝑏𝑆𝑛 times using Equations (19-21). 

The variable 𝑛  represents a user-generated integer 

number. This method sets the 𝑛value to 10 based on 

extensive experimental testing. The following stage 

involves calculating fitness values for each new subset. 

The final step is to replace the best subset. Combine 

selected features into a new subset (𝑛𝑆) if its fitness 

value exceeds that of the best subset (𝑏𝑆). 

𝑄 = 𝐵𝑤𝑏𝑆 . 𝑆𝐹     (19) 

𝑈 = 𝑏𝑆. 𝑢𝐹 [𝑗]     (20) 

𝑛𝑆 = 𝑄 − 𝑈     (21) 

𝑗is the element value that must be removed from 

the 𝐵𝑤𝑏𝑆, 𝑆𝐹. 

 

3.4.2.4 Scenario 6 

The above scenario produces 𝑀 − 𝐿 random 

positions, with  𝐿  characterizing a formerly shaped 

random integer from the initial and second scenarios. If 

the robustness value of the recently twisted solution 

surpasses that of the 𝐵𝑤𝑏𝑆, it is utilized as a substitute. 

It enhances feature selection by simulating adaptive 

color-changing activities, improving segmentation 

margins, optimizing hyper-parameters, and ensuring 

accurate recognition of small and irregular polyps in real-

time endoscopic video analysis. 

The AMC-RCN enhances polyp detection by 

incorporating Mask R-CNN and ACFO. This method 

improves segmentation accuracy by refining boundaries 

and optimizing feature selection. ACFO dynamically 

modifies hyper-parameters, resulting in more competent 

training and speedier convergence. The Mask R-

CNNconstituent tailors convolutional filters to 

experiential polyp regions, resulting in enhanced feature 

extraction and multi-scale processing. AMC-RCN 

efficiently supervises tiny and irregular polyps under 

complex endoscopic surroundings, making it suitable for 

concurrent scientific applications. Its accurate detection 

potential aids in early identification, considerably 

reducing CRC hazard and improving patient outcomes. 

Algorithm 1 shows the working procedure of suggested 

AMC-RCN model.  

Algorithm 1. Adaptive Masked Cuttlefish Region 
Convolve NeuroNet (AMC-RCN) method 

Start 

Step 1: initialize the parameters for mask-R-CNN and 
CFO 

Step 2: Mask R-CNN 

Initialize Mask R-CNN model 

Load input images 

For each image: 

Generate feature maps using CNN 

Identify region proposals using RPN 

Extract object features using ROI Align 

Predict bounding boxes and segmentation 
masks 

Store extracted features 

Step 3: Feature Selection using CFO 

Initialize the population with 𝑁  solutions 
(each solution is a subset of features) 

Define ranked feature list from PCA 
components 

Set constraints: min and max number of 
features 

Repeat until the stopping condition is met: 

For each solution: 

Divide into selected and unselected subsets 

Apply reflection (Q) and visibility (U) to update 
subsets 

Evaluate the fitness of new subsets 

Update the best solution if the improvement is 
found 

Return optimized feature subset 

Step 4: Classification using Optimized Features 

Train classifier using selected features 

 Evaluate model performance on test data 

Return final classification results 

End 

 

4. Results  
The method is performed in Windows 10 (64-

bit), Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz and 
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8GB RAM. A minimum of 200GB storage in the C Drive 

is required for dataset management and model training. 

The solution employs Python 3.13.1, Tensor Flow, 

Keras, and Scikit-Learn for DL-based polyp detection, 

ensuring real-time processing, precise segmentation, 

and dependable model performance in endoscopic 

video analysis. The method’s performance is evaluated 

utilizing different metrics, including accuracy, F1-score, 

recall, and precision. The method is compared with 

traditional methods like ASODE [29], YOLOv8 [30] and 

SIFT [28]. 

 

4.1 Evaluation phase  

This section evaluated the suggested models 

performance using Receiver Operating Characteristic 

(ROC). 

 

4.1.1 ROC 

It is utilized to compute a method's capacity to 

recognize and design the True Positive (TP) Rate about 

the False Positive (FP) Rate at various entries. This 

curve employs an Area Under Curve (AUC) rate to 

evaluate the AMC-RCN system's potential to distinguish 

polyps. Figure 4 displays the predictable AUC value. 

Figure 4. Graphical representation of AUC for 

proposed AMC-RCN method. 

The ROC curve represents how well the AMC-RCN 

method works in detecting polyps by categorizing 

troubles at diverse thresholds. The method reveals 

outstanding forecast accuracy, effectively reducing FP, 

with a curve in the upper left corner and an AUC of 0.98. 

This important increase in reduced FP rates 

demonstrates the algorithm's strong decision-making 

abilities and verifies the suggested optimization 

framework's exactness and reliability in recognizing 

system flaws. 

 

 

4.2 Comparison Analysis  

A comparative analysis is conducted against 

traditional methods such as SIFT [28], ASODE [29] and 

YOLOv8 [30], to assess the efficiency of the ACM-RCN 

system for real-time polyp detection. It is evaluated using 

various metrics like F1-Score, accuracy, recall, and 

precision. 

 

4.2.1 Accuracy 

It is defined as the fraction of all accurate 

forecasts produced by the model. Figure 5 and Table 2 

display the accuracy results for the recommended and 

existing methods. Accuracy is calculated by the given 

Equation (22).  

𝐴𝑐𝑐 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (22)  

 

Table 2. Numerical findings of accuracy rates 

Method Accuracy (%) 

SIFT [28] 96.7 

ASODE [29] 92.31 

YOLOv8 [30] 92.24 

AMC-RCN [Proposed] 98.02 

In polyp detection, the suggested AMC-RCN 

model achieves the maximum accuracy of 98.02%, 

outperforming the SIFT model (96.7%), YOLOv8 

(92.24%), and the ASODE model (92.31%). The AMC-

RCN's excellent accuracy suggests that it is used in real-

time, improving clinical results for early CRC diagnosis 

and polyp detection in colonoscopies. 

 

4.2.2 Precision 

Precision is definite as the relation of exactly 

forecasted optimistic occurrences to all cases the 

algorithm projected as positive. Comparative precision 

results are displayed in Figure 6 and Table 3. Precision 

is computed using Equation (23).  

𝑃𝑟𝑒 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       (23) 

Table 3. Numerical outcome of precision rates 

Method  Precision (%) 

SIFT [28] 88.4 

ASODE [29] 85.71 

YOLOv8 [30] 96.02 

AMC-RCN [Proposed] 97.91 
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Figure 5. Comparison accuracy result of proposed and prior studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison result of proposed AMC-RCN and prior studies. 

The most accurate model is the AMC-RCN 

model, which achieved 97.91% precision, greatly 

surpassing the ASODE model (85.71%), SIFT (88.4%), 

and the YOLOv8 (96.02%). The exceptional accuracy of 

the AMC-RCN demonstrates its capacity to lower FP and 

is an essential component for concurrent medical 

purposes. 

 

4.2.3 Recall 

The capacity of the system to properly recognize 

pertinent examples of the practices from among all of the 

real instances that are available. The memory of the 

identification of the model practices is shown in Figure 7 

and Table 4. Recall is calculated using Equation (24). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (24)  

Table 4. Recall values for proposed AMC-RCN and 
conventional strategies 

Method Recall (%) 

SIFT [28] 83.2 

ASODE [29] 86.42 

YOLOv8 [30] 95.90 

AMC-RCN [Proposed] 97.07 

The AMC-RCN model outperforms the YOLOv8 

model (95.90%), SIFT (83.2%), and the ASODE model 

(86.42%), exhibiting the maximum recall at 97.07%.  
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Figure 7. Prediction outcome of proposed AMC-RCN model and conventional strategies. 

 

The improved recall performance implies that 

AMC-RCN is especially well-suited for uses like medical 

diagnostics to detect a polyp and has direct 

repercussions. 

 

4.2.4 F1-score 

It is used to assess test success in binary 

identification. The harmonic means of recall and 

precision are used to calculate it. Figure 8 and Table 5 

denote the F1 score rates for the present and suggested 

methods. It is evaluated by Equation (25).  

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
    (25) 

Table 5. Analyzing F1-Score values for Proposed 
and existing strategies 

Method  F1-score (%) 

SIFT [28] 85.6 

ASODE [29] 86.06 

YOLOv8 [30] 95.96 

AMC-RCN [Proposed] 96.97 

The AMC-RCN method performs better at 

balancing precision and recall for polyp identification, 

achieving the greatest F1-score of 96.97%. The AMC-

RCN surpasses the ASODE model (86.06%), SIFT 

(85.7%), and the YOLOv8 (95.96%), demonstrating its 

ability to handle a variety of polyp features and produce 

more dependable detection results. This notable 

increase in the F1 score highlights the AMC-RCN’s 

ability to offer reliable and accurate detection. The 

comparison analysis clearly demonstrates that the AMC-

RCN model outperforms previous methodologies in 

terms of recognition accuracy, segmentation precision, 

and adaptability to complex and irregular polyp shapes. 

Unlike conventional approaches, AMC-RCN efficiently 

handles a wide range of polyp shapes while ensuring 

reliable identification. Its sophisticated architecture 

makes it ideal for real-time clinical use, providing faster 

and more precise results during endoscopic operations 

while increasing diagnostic reliability.  

 

5. Discussion 

CRC was the most general cancers in the globe, 

although its incidence and mortality rates have dropped 

significantly by around 51% and 32%, correspondingly 

due to advances in routine transmission and 

adenomatous polyp deletion. The finding and 

recognition of endoscopic observation technologies, 

together with the development of computer vision and 

DL systems, have changed gastrointestinal diagnostics 

by enabling concurrent detection and precise 

segmentation of cancerous injuries. These 

improvements facilitate besieged biopsies and the 

effectual removal of precancerous polyps, eliminating 

the requirement for preventable models and medical 

waste. Concurrent polyp detection in endoscopic 

recordings was significant for early CRC diagnosis, 

which enhanced patient endurance rates by allowing for 

imperative medical interferences. Automated recognition 

enhanced accuracy and reliability while lowering the 

likelihood of human error in polyp recognition.  
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Figure 8. Graphical representation of F1-Score. 

It also enlarged medical effectiveness by sustaining 

endoscopists in concurrent, allowing for quicker 

decision-making during actions. Sophisticated 

recognition frameworks enhanced segmentation and 

feature extraction even under tricky imaging conditions, 

increasing diagnostic consistency. Furthermore, 

concurrent technologies support minimally persistent 

screening, minimizing unnecessary biopsies and 

improving patient care while critical healthcare 

expenditures. The objective of this research was to 

generate an enhanced technique for concurrent polyp 

detection in endoscopic videos that ensures precise 

segmentation and capable feature selection. Despite 

remarkable improvements in computerized polyp 

recognition employing sophisticated DL methods 

includes YOLOv5, ColonSegNet, CNN-LSTM, Swin 

Transformer, and D2polyp-Net, important research gaps 

persist. Several studies have informed high precision 

recital. However, limitations like dataset bias [11], 

reproducibility issues [12], a need of scientific validation 

[17], and generalization concerns across various 

populations [13] remain. Additionally, high processing 

rates [19], concurrent alteration problems [15], and poor 

performance on low-resource systems [18] hinder 

extensive use. Previous systems often rely on labelled 

datasets and lack interpretability, reducing medical 

belief. As a result, there was an important gap in 

embryonic insubstantial, capable, concurrent, and 

clinically validated polyp recognition methods that 

ensure fairness, scalability, and flexibility across varied 

settings for better analytical accuracy and realistic 

exploitation in endoscopy workflows. The AMC-RCN 

was compared to traditional systems, including SIFT 

[28], ASODE [29], and YOLOv8 [30]. SIFT [28], a well-

known keypoint-based feature extraction technique, falls 

short in medical imaging situations such as endoscopic 

recordings, where polyps frequently have low contrast, 

irregular forms, and subtle textural variations. It fails to 

capture the contextual and spatial interactions 

necessary for accurate polyp detection. ASODE [29], an 

advanced optimization method, improves feature 

selection capabilities, but its computationally demanding 

operations make it unsuitable for real-time applications. 

Furthermore, it does not include pixel-level 

segmentation, which was necessary for precisely 

identifying polyp borders. YOLOv8 [30], an advanced 

DL-based object recognition method, was particularly 

capable and provided concurrent recognition 

capabilities. However, YOLOv8 [30] was mainly 

consscerned with bounding box detection and required 

the fine-grained segmentation potential necessary to 

accurately perceive tiny or flat polyps with confusing 

boundaries. Additionally, YOLOv8 [30] misclassify or 

totally ignore polyps that required major attributes, 

resulting in FN. The AMC-RCN method resolves these 

constraints by utilizing ACFO, which suggested cuttlefish 

adaptive color inflection activity, dynamically tuning 

hyper-parameters and alternative the most pertinent 

characteristics from endoscopic images [31]. This 

enables the system to process segmentation boundaries 

efficiently while decreasing preventable estimates, 

making it ideal for concurrent medical relevance. The 

Mask R-CNN constituent helps by generating bounding 

boxes and pixel-wise segmentation masks, which 

bridges the gap among recognition and precise 

localization. Furthermore, AMC-RCN employed multi-

scale processing techniques to precisely spot both tiny 

and big polyps, despite of their position or outline. Unlike 

traditional methods, the suggested system was capably 

deal with rough structures, overlapping tissues, and 

erratic lighting circumstances. This full incorporation not 

only improved recognition performance, but it also 

speeds up training convergence and increased clinical 

reliability. Overall, the AMC-RCN framework 
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outperformed traditional systems by addressing key 

restrictions with intelligent optimization, adaptive 

filtering, and accurate segmentation capabilities, making 

it a capable device for improving CRC screening and 

early intervention tactics. The AMC-RCN system has 

substantial therapeutic applications because it allows for 

the real-time and extremely precise detection of polyps 

in endoscopic recordings [32]. Its combination of 

segmentation precision and adaptive feature 

optimization ensures early detection of malignant 

precursors, which improved patient outcomes and 

lowers CRC mortality [33]. The model's capacity to deal 

with small, irregular polyps and swiftly process video 

frames makes it perfect for use in real-time clinical 

settings [34]. This not only decreased the workload for 

gastroenterologists, but it also eliminated human error, 

improved diagnostic reliability, and enables speedier 

clinical decision-making during endoscopic 

examinations. AMC-RCN marks a substantial step 

forward in the field of computer-aided colonoscopy by 

combining biologically inspired optimization with cutting-

edge DL architecture. Its comprehensive technique, 

which combined detection, segmentation, and adaptive 

optimization, solves the complex issues of polyp 

diagnosis in real-time clinical settings. The AMC-RCN 

architecture outperformed traditional approaches, 

providing a highly scalable, interpretable, and clinically 

robust solution that improved CRC screening and paves 

the path for future intelligent endoscope systems. 

 

6. Conclusion  

Polyp detection in endoscopic videos improved 

early CRC analysis and endurance rates with the 

reasonable decision-making. It enhanced accuracy, 

eradicates human error, improves medical efficiency, 

allows greater segmentation in complicated conditions, 

assists minimally constant programs, and saves 

healthcare outlays. The purpose of this research was to 

create an enhanced framework for concurrent polyp 

recognition in endoscopic videos, with precise 

segmentation and capable feature selection to support 

in early CRC detection. The findings showed that AMC-

RCN outperformed standard approaches, attaining 

higher precision (97.91%), recall (97.07%), accuracy 

(98.02%), F1-score (96.97%), and more robust handling 

of tiny and irregular polyps in complex endoscopic 

settings. However, the model has some disadvantages, 

such as high computational needs for real-time 

processing and potential susceptibility to variations in 

endoscopic imaging parameters. Future research 

concentrates on increasing computing efficiency, 

integrating lightweight architectures for real-time 

deployment, and improving generalization across 

various datasets to improve clinical applications. 

Subsequent to the optimization of the ACFO-operated 

hypermeter, it guarantees superior recognition and rapid 

convergence relative to conventional approaches by 

using CLAHE for contrast enhancement and HOG for 

optimization. The real-time architecture offers 

substantial advantages for clinical distribution, aiding 

gastroenterologists in the early detection of CRC and 

enhancing patient survival rates. Future study should 

concentrate on enhancing computational efficiency in 

endoscopic systems for practical applications and 

broaden validation across diverse datasets to improve 

generalizability. With further refinement, AMC-RCN 

prevention has the potential to evolve into a significant 

AI-assisted tool for CRC screening, ultimately reducing 

the worldwide burden of CRC. 
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