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Abstract: A combined Taguchi-grey Relational Analysis (GRA) has been used to improve the wear resistance of 

Flax, Bagasse and Epoxy F-B-E composites that have been treated with NaOH. The study investigates Dry sliding 

wear behaviour using Taguchi's L27 orthogonal array experimental design in compliance with ASTM G99 standards. 

Additionally, this study assesses the influence of independent variables such as usual load (2N,3N,4N), Sliding 

velocity (1m/s,2m/s,3m/s) and proportion of fibers (F75-B25, F50-B50, F25-B75) on the wear behaviour of epoxy 

resin reinforced with flax and bagasse powder composites, adopting a statistical methodology. Composite samples 

were made by hand layup technique using an epoxy resin mixed with flax fiber and bagasse powder. Dry sliding wear 

tests were done in a pin-on-disc setup, with adherence to Taguchi’s experimental design L27. This means scheming 

the “Signal-to-noise” (S/N) ratio and performing analysis of variances (ANOVA) to identify the optimal factors to 

minimize the wear rate to 98.30%. A better wear resistance rating was obtained from a composite material created 

by epoxy reinforced with 25% flax and 75% bagasse. Regression analysis's multi-response rate was 98.57%. The 

results showed that A1 (Load), B1 (Sliding Velocity), and C3 (Fibre Content Percentage) produced the best outcomes 

for wear rate and co-efficient of friction. The observed composite specimens were the primary variable influencing 

the wear rate, with sliding velocity and normal load also being major factors. ANOVA on the grey relational grade 

(GRG) showed that sliding velocity was the most important factor affecting how well the F-B-E composites resist 

wear. 

Keywords: Flax, Bagasse, Epoxy, NaOH, Wear Behaviour, Taguchi method, ANOVA, GRA 

 

1. Introduction 

The advancement of human culture to its current 

position has rendered composite materials essential in 

numerous aspects of our existence. Composites consist 

of two or more constituent materials that exhibit different 

forms, chemical compositions, and physical or chemical 

properties, which do not dissolve in each other. As a 

result, composites are being engineered as alternatives 

to conventional materials to improve mechanical 

properties, such as increased fracture toughness, high 

specific strength, resistance to cold, moisture, and heat, 

and ease of production. [1-4] Wear study and 

characterisation is a fundamental aspect of tribology that 

involves the examination of how materials and their 

constituents deteriorate under different loads and 

environmental conditions [5]. In many tribological 

applications, the consideration of minimizing size is 

taken into account within the goal of minimizing wear 

rates and achieving nominal material loss. The various 

physical and chemical forms of physical surface 

modification, which are more effective than others, as 

they can produce a modified pinion interface which 

strengthens the interaction of the fibres in the composite 

materials and the matrix.  Gang D, et al. describe 

recognized chemical alteration procedures alkali, silane, 

acid, and peroxide treatments that can enhance the 

interfacial interactions between the fiber and matrix by 

creating an additional strengthening effect. It is essential 

to identify the tribological properties of the natural fibre 

composites before use in a tribological application [6]. 

The experimental study conducted by Liu Y, Xie J, Wu N 

et al demonstrated the mechanical and tribological 

properties of the corn stalk composite were greatly 

improved with the silane treatment of the fibres to 

improve the fibre-matrix bonding [7]. Rajesh Kumar G et 

al concluded that treating Phoenix sp. fibre with a 15% 

NaOH solution has enhanced the shape and wear 

resistance of the fibre and its composites [8]. 

This work highlights of tribological behaviour of 

F-B-E composites with NaOH treatment under different 

weight percentages and loading conditions. A novel 

effort has been undertaken to ascertain the wear 
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behaviour of F-B-E composites by statistical 

methodologies. The research makes a way for the young 

researchers to develop sustainable projects in 

manufacturing automotive sector. The section 2 

describes the material preparation while the section 

three 3 furnish about Taguchi methodology while a 

section four focusses on results and discussion followed 

by derived conclusions. 

 

2. Materials Preparation 

2.1 Preparation of Fibers 

The preparation of materials is Flax serves as a 

matrix material, while bagasse acts as a reinforcement; 

the addition of epoxy functions as a hardening agent, 

resulting in a liquid with increased viscosity. This 

experiment utilised the hand layup method to fabricate 

the flax bagasse fiber-reinforced composite. The 

composite laminates were manufactured and cured. The 

cured laminates were cut to create wear test specimens 

following ASTM G99 criteria [9]. Table 1 delineates the 

parameters of the fabricated composite specimens. 

Table 1. Composite Characteristics 

S.no Specimens Composite 

1 A Flax75/Bagasse25 

2 B Flax50/Bagasse50 

3 C Flax25/Bagasse75 

 

2.2 Preparation of Composites 

Flax served as the matrix material, and bagasse 

and epoxy hardener served as reinforcement in the 

preparation of the wear test specimens. Flax-bagasse 

fibers treated with NaOH were stacked using a simple 

hand layup technique. The fiber layers were then evenly 

covered with a pre-mixed epoxy and hardener mixture. 

Applying weights to the layup allowed for efficient resin 

penetration and consolidation. To optimize mechanical 

qualities, the laminates were post-cured after a 24-hour 

initial curing period at room temperature. Composite 

sheets were carefully removed once they had fully dried, 

and examples were then cut to the proper sizes for wear 

tests. 

 

2.3 Test Setup and Wear Runs 

The wear properties of the specimens were 

analysed via a pin-on-disc wear testing device, in 

compliance with the ASTM G99 standard. The 

experiments were conducted using weights of 2N, 3N, 

and 4N. Figure 1(a) illustrates the DUCOM TR20LE pin-

on-disc testing apparatus. The specimens consisted of 

round cylindrical pieces adhered with glue to a 30-mm-

long composite specimen pin. This preserved the 

contact surface in alignment with the plane of the 

laminate, as illustrated in Figure. 1(b). This study aimed 

to assess how engineered composite materials wear 

under different conditions, such as sliding speeds of 1 

m/s, 2 m/s, and 3 m/s; weights of 2 N, 3 N, and 4 N; and 

different material mixes. The fibre composition was 

modified across three formulations: Flax 75% - Bagasse 

25%, Flax 50% - Bagasse 50%, and Flax 25% - Bagasse 

75%. The experiment aimed to determine the influence 

of these characteristics on Dry sliding wear rate and co-

efficient of friction (COF). 

 

2.4 Plan of Experiments 

This research employed an L27 orthogonal 

array to systematically analyze the impact of these three 

variables, conducting 27 tests with three variables at 

three levels each.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1 (a) Wear Experimental Setup, (b) Wear Specimens 

(a) (b) 
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The impact of material type, applied stress, and 

sliding velocity on wear rate and coefficient of friction 

was investigated by quantitative approaches, including 

Taguchi optimisation and ANOVA analysis. The "Smaller 

is better" methodology was employed to determine the 

optimal parameters for minimising wear rates and 

friction.  

An orthogonal array was formed following the 

identification of control parameters, their levels, and 

responses, as illustrated in Table 2. Three factors are 

being assessed at three distinct levels. This study 

performed a Taguchi experiment employing an L27 

orthogonal array, including 27 trials, 3 factors, and 3 

levels [10].  

 

Table 2. Control factors and their levels 

Control Factors Level 1 Level 2 Level 3 

Load  

N (A) 
2 3 4 

Sliding Velocity m/s (B) 1 2 3 

Fiber Percentages % (C) Flax 75% Bagasse 25% Flax 50% Bagasse 50% Flax 25% Bagasse 75% 

 

Table 3. Standard Orthogonal Array L27 (33) of Taguchi for Wear 

Runs 
Control Factors 

Load, N Sliding Velocity m/s Fiber Content wt.% 

1 2 1 25 

2 2 1 50 

3 2 1 75 

4 2 2 25 

5 2 2 50 

6 2 2 75 

7 2 3 25 

8 2 3 50 

9 2 3 75 

10 3 1 25 

11 3 1 50 

12 3 1 75 

13 3 2 25 

14 3 2 50 

15 3 2 75 

16 3 3 25 

17 3 3 50 

18 3 3 75 

19 4 1 25 

20 4 1 50 

21 4 1 75 

22 4 2 25 

23 4 2 50 

24 4 2 75 

25 4 3 25 

26 4 3 50 

27 4 3 75 
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The tests conformed to the typical orthogonal 

array. The orthogonal array was selected based on the 

criterion that its degrees of freedom must be more than 

or equal to the sum of the wear parameters. This study 

employed an L27 orthogonal array comprising 27 rows 

and three columns, as depicted in Table 3. 

 

2.5 Taguchi Technique 

The Taguchi technique is an effective 

methodology for creating high-quality systems through a 

systematic approach to data collection, analysis, and 

interpretation to achieve study objectives [11-13]. These 

strategies facilitate a methodical approach to 

experimental design, enabling the integration of the most 

pertinent information while minimising experimentation. 

Taguchi parameter design identifies the important 

performance characteristics to eliminate design factors 

that are expected to have negative effects from unknown 

sources of variation. [13-14]. In contrast to conventional 

experimental design or parameter design, Taguchi's 

methods allow for the least number of trials while 

studying selected combinations of variables. 

Furthermore, the Taguchi method can efficiently create 

controlled data while eliminating the need to analyze the 

complicated and often unknown functions of the process 

variables. An essential and frequently problematic 

element of experimental planning is identifying the 

relevant elements. To this problem, Taguchi came up 

with standard orthogonal arrays whereby the 

experimenter can determine several factors on an 

ultimate desired product or outcome and organize the 

experimental plan systematically.  

Analysing the experimental data using analysis 

of variance and means allows one to investigate the 

influence of factors. 

The Signal-to-Noise (S/N) ratio formula used in 

wear behaviors studies, particularly within the context of 

Taguchi experiments, is:  

𝑆/𝑁 =  −10 ∗  𝑙𝑜𝑔10((1/𝑛)  ∗  𝛴(𝑦𝑖^2))      (1) 

 

3. Results and Discussions 

The experiments aimed to establish the 

correlation between sliding speed (S), applied load (L), 

and displacement distance (D) in relation to the dry 

sliding wear of the two composites under investigation. 

The outcomes of dry sliding wear for each distinct 

combination of parameters were gathered from 

experiments utilising the orthogonal array method and 

are displayed in Table 4. 

 

3.1 Taguchi Analsis of Dry Sliding Wear 

Parameters 

Minitab 18 software was utilised for the 

statistical analysis of the experimental results. Table 4 

displays the experimental results for wear, frictional 

force, and their corresponding S/N ratios [15]. 

Figure. 2 presents a graph depicting the 

influence of load (N), sliding velocity (m/s), and fibre 

content (wt%) on system performance, measured by 

signal-to-noise ratios, with the target of minimising the 

response ("smaller is better").  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Wear rate Main effects Plot for S/N Ratio 
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Table 4. Experimental Design for sliding wear using L-27 OAs along with its output response characteristics 

Runs 

Control Factors Response Variables S/N Ratio 

Load, N 

Sliding 

Velocity 

m/s 

Fiber 

Content 

wt.% 

Specific wear 

rate × 10-13 

mm3 /N-m 

Co-Efficient 

of Friction 

Specific wear 

rate × 10-13 

mm3 /N-m 

Co-Efficient 

of Friction 

1 2 1 25 1.326 0.332 -2.45 9.577 

2 2 1 50 1.311 0.317 -2.349 9.987 

3 2 1 75 1.307 0.293 -2.327 10.654 

4 2 2 25 1.428 0.433 -3.094 7.264 

5 2 2 50 1.405 0.413 -2.955 7.675 

6 2 2 75 1.387 0.393 -2.844 8.106 

7 2 3 25 1.616 0.623 -4.169 4.114 

8 2 3 50 1.609 0.615 -4.129 4.227 

9 2 3 75 1.594 0.6 -4.049 4.437 

10 3 1 25 1.336 0.343 -2.519 9.307 

11 3 1 50 1.313 0.31 -2.362 10.173 

12 3 1 75 1.272 0.3 -2.091 10.458 

13 3 2 25 1.427 0.43 -3.09 7.331 

14 3 2 50 1.405 0.415 -2.955 7.639 

15 3 2 75 1.386 0.4 -2.836 7.959 

16 3 3 25 1.642 0.655 -4.305 3.675 

17 3 3 50 1.602 0.643 -4.095 3.843 

18 3 3 75 1.603 0.61 -4.099 4.293 

19 4 1 25 1.373 0.38 -2.753 8.404 

20 4 1 50 1.373 0.368 -2.75 8.683 

21 4 1 75 1.358 0.36 -2.658 8.874 

22 4 2 25 1.403 0.448 -2.94 6.974 

23 4 2 50 1.476 0.44 -3.383 7.131 

24 4 2 75 1.403 0.436 -2.938 7.21 

25 4 3 25 1.643 0.649 -4.311 3.758 

26 4 3 50 1.642 0.648 -4.307 3.768 

27 4 3 75 1.542 0.636 -3.763 3.931 

 

Table 5. Mean S/N Ratios for Wear rate 

Level Load, N Sliding Velocity (m/s) Fiber Content (wt. %) 

1 -3.152 -2.474 -3.293 

2 -3.15 -3.003 -3.255 

3 -3.312 -4.137 -3.067 

Delta 0.163 1.663 0.226 

Rank 3 1 2 
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Figure 3. Residual Plots for Wear rate S/N 

The load graph demonstrates a minor decline in 

the average signal-to-noise ratio as the load escalates 

from 2 N to 4 N, suggesting a negligible adverse impact 

[16]. The load plot demonstrates a marginal decrease in 

the mean S/N ratio as the load escalates from 2N to 4N, 

suggesting a modest adverse effect. Conversely, sliding 

velocity exerts a more pronounced influence; the S/N 

ratio declines markedly with elevated velocity, 

underscoring that increased sliding speeds substantially 

impair performance. On the other hand, fiber content 

shows a slight upward trend, indicating improved 

performance at higher fiber levels, particularly between 

50% and 75%. Of the three parameters, sliding velocity 

is the most significant, but increased fiber content seems 

advantageous. So, to improve performance, we need to 

use lower sliding velocities and more fiber content, while 

the load has very little effect. 

The Table 5 displays the mean S/N ratios for 

three components across various levels. Reduced S/N 

levels signify inferior performance. The S/N ratio for 

sliding velocity decreases markedly from level 1 to level 

3, exhibiting the greatest delta of 1.663, so establishing 

it as the most relevant factor (Rank 1). The fiber content 

exhibits substantial variability (delta = 0.226), ranking 

second in significance. The load has the least influence, 

showing negligible change (delta = 0.163), and ranks 

third. The findings indicate that reducing sliding velocity 

significantly enhances performance, followed by an 

increase in fiber content, but load exerts a relatively 

minor influence. 

The regression equation for Wear Rate = - 1.53 

- 0.0802 Load, N - 0.831 Sliding Velocity m/s + 0.00452 

Fiber Content wt. %  

𝑆 =  0.214483 𝑅 − 𝑆𝑞 =  92.4% 𝑅 − 𝑆𝑞 (𝑎𝑑𝑗)  =  91.4% 

           (2) 

Figure. 3 shows the leftover plots for the wear 

rate signal-to-noise ratio analysis, which is used to check 

if the regression model is good enough. The normal 

probability plot indicates that the residuals approximate 

a normal distribution, as the points closely align with the 

straight line. The residuals shown against the fitted 

values are spread out randomly without any clear 

patterns, which suggests that the variance is stable and 

the model fits well. The histogram of the residuals 

displays a nearly symmetric distribution centred at zero, 

thereby supporting the assumption of normality. The plot 

of residuals against the order of data shows oscillation 

without a clear trend or systematic pattern, suggesting 

that the residuals are independent and not influenced by 

the sequence of data collection. The analysis of the 

residuals shows that the model meets the assumptions 

of normality, independence, and homoscedasticity, 

which means the regression model is appropriate and 

reliable for studying the wear rate S/N ratio. 

 

3.1.1 Analysis of Variance for Wear rate 

Analysis of Variance (ANOVA) is a statistical 

method used to determine if significant differences exist 

among the means of multiple groups. In wear rate 

analysis, ANOVA assesses the influence of factors 
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including material type, load, speed, and lubrication on 

wear performance. 

S = 0.147813 R-Sq = 96.84% R-Sq(adj) = 

95.90% 

Seq SS: sequential sum of squares; DF: 

degrees of freedom. 

Adj MS: adjusted mean squares: Adj SS: 

adjusted sum of squares. 

Table 6 of the ANOVA illustrates the statistical 

significance and impact of each factor affecting the wear 

rate (S/N ratio). Sliding velocity (m/s) is the primary 

factor, demonstrating the highest F-value (297.300) and 

a negligible p-value (0.000), indicating a significant 

influence on wear behaviour. It accounts for 93.8% of the 

overall variation.  The fiber content (wt. %) is the 

subsequent influential element, exhibiting a significant p-

value (0.009) and a contribution of 1.9%. Load (N) exerts 

a minor but statistically significant effect (p = 0.047), 

accounting for merely 1.1% of the variance. The error 

constitutes a minor fraction of the overall variation, 

suggesting the model is appropriately fitted [17]. In 

summary, sliding velocity has the greatest impact on the 

wear rate, followed by fibre content and load. The low p-

values confirm that all components are statistically 

significant at a 95% confidence level, justifying their 

inclusion in the model. 

 

3.2 Co-efficient Friction 

The coefficient of friction (COF) is crucial in wear 

behaviour, influencing material degradation. A high COF 

increases frictional heat and wear, while a low COF 

reduces surface damage. Factors like load, speed, 

lubrication, and material properties affect COF. 

Optimizing COF helps enhance durability and efficiency 

in mechanical applications [18]. 

Figure 4 illustrates a main effects figure for 

signal-to-noise (S/N) ratios employed to assess the 

influence of three input factors: load (N), sliding velocity 

(m/s), and fibre content (wt%) on wear performance. The 

analysis employs the "Smaller is Better" criterion, 

signifying that a diminished wear rate is advantageous, 

which corresponds with an increased S/N ratio. 

 

Table 6. Analysis of variance for wear rate 

Source DF Seq SS Adj SS Adj MS F P % of Contribution 

Load, N 2 0.156 0.156 0.078 3.580 0.047 0.011 

Sliding Velocity (m/s) 2 12.991 12.991 6.496 297.300 0.000 0.938 

Fiber Content (wt.%) 2 0.263 0.263 0.132 6.020 0.009 0.019 

Error 20 0.437 0.437 0.022   
 

Total 26 13.848     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. COF Main effects plot for S/N Ratio 
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Table 7. Response Table for Coefficient of Friction 

Level Load (N) Velocity (m/s) Fiber Content (wt. %) 

1 7.339 9.567 6.71 

2 7.184 7.479 7.012 

3 6.526 4.003 7.326 

Delta 0.813 5.564 0.616 

Rank 2 1 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Residual Plots for COF S/N 

The data clearly indicates that sliding velocity 

has the most substantial impact on the wear rate. As the 

velocity increases from 1 to 3 m/s, the signal-to-noise 

ratio significantly decreases, suggesting a rapid increase 

in wear. Therefore, decreasing slide velocity is crucial for 

minimising material wear. 

The load parameter exhibits a marginal decline 

in the S/N ratio as load levels increase. This trend 

indicates that increased loads result in slightly greater 

wear, albeit the impact is not as significant as that of 

sliding velocity. 

Ultimately, fiber content exhibits a modest yet 

continuous enhancement in the signal-to-noise ratio as 

fiber percentages increase. This evidence indicates that 

increased fiber reinforcing contributes to improved wear 

resistance. 

The Table 7 presents data for three distinct 

levels of sliding fiber testing. It encompasses the applied 

stress (in Newtons), sliding fiber velocity (in meters per 

second), and fiber content (in weight percentage). Level 

1 exhibits the maximum load and velocity, while Level 3 

contains the highest fiber content. The Delta row 

denotes the variation in results between Level 1 and 

Level 3, highlighting the most significant disparity in fiber 

velocity (5.564 m/s). The Rank row indicates the 

performance ranking according to these criteria, with 

Level 2 achieving the greatest rank for fiber velocity and 

Level 3 for fiber content. 

The regression equation of Co-efficient of 

friction= 13.2 - 0.407 Load, N - 2.78 Sliding Velocity m/s 

+ 0.0123 Fiber Content wt.% 

S = 0.476332 R-Sq = 96.5% R-Sq(adj) = 96.0%      (3) 

The Figure 5 presents the residual plots for the 

coefficient of friction signal-to-noise ratio, providing a 

comprehensive assessment of the regression model's 

appropriateness. The normal probability map (top-left) 

indicates that the residuals adhere to a normal 

distribution, as the points closely align with the straight 

line. The Residuals vs. Fitted Values Plot (top right) 

displays a random distribution, signifying consistent 
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variance and the lack of identifiable patterns, hence 

confirming model validity. The residual histogram 

(bottom left) exhibits near-symmetry around zero, 

upholding the normality assumption. The Residuals vs. 

Observation Order Plot (bottom-right) graphically 

illustrates randomness of residuals vs. time and implies 

no autocorrelation. These plots together affirm that the 

regression assumptions are well met: the residuals are 

normally distributed, exhibit constant variance, and 

demonstrate no autocorrelation. This evidence confirms 

the dependability of the fitted model in predicting the 

coefficient of friction S/N ratio under the experimental 

conditions. 

 

3.2.1 Analysis of Variance for COF S/N 

Table 8 presents an ANOVA analysis examining 

the influence of three process parameters load (N), 

sliding velocity (m/s), and fibre content (wt %) on a 

measured response using the "smaller is better" signal-

to-noise ratio approach. 

S = 0.312480 R-Sq = 98.69% R-Sq(adj) = 

98.30% 

The Load (N) exhibits a Sequential Sum of 

Squares (Seq SS) of 3.357, an F-value of 17.19, and a 

p-value of 0, demonstrating statistical significance. 

Nonetheless, its percentage contribution to the total 

variation is merely 2.2%, indicating that while it exerts a 

measurable effect, it is not the primary factor [23]. 

This study finds sliding velocity (m/s) as the 

essential component. The Seq SS is 142.196, with a 

substantial F-value of 728.14 and a p-value of 0, 

signifying that this factor explains 95.3% of the entire 

variability. This evidence indicates that alterations in 

sliding velocity substantially affect the response variable. 

 The fibre content (wt.%) exhibits statistical 

significance (p = 0.002) with an F-value of 8.75, 

accounting for 1.1% of the overall variation. While its 

impact is less pronounced than that of sliding velocity, it 

remains a crucial aspect. The error term, indicative of the 

unexplained variability, has a total of squares amounting 

to 1.953. In summary, sliding velocity is the foremost 

factor, followed by load and fibre content in evaluating 

performance based on the "smaller is better" criterion. 

 

3.3 Multi Response 

The wear behaviour is influenced by several 

factors, such as load, sliding velocity, material 

composition, and lubrication conditions. A lower wear 

rate and coefficient of friction are generally preferred, as 

they indicate enhanced tribological performance [19]. A 

multi-response methodology of wear behaviour analysis 

is necessary for overall comprehension that goes 

beyond minimization of material loss. Reducing wear 

rates can unintentionally increase friction, generate 

excessive heat, or roughen surfaces, leading to system 

failure. By considering multiple variables such as wear 

rate, friction coefficient, surface finish, and temperature 

as a whole, multi-response optimization determines 

balanced operating parameters. This leads to more 

efficient solutions for tribological systems. 

Sliding velocity is frequently the paramount 

factor influencing wear, as elevated speeds produce 

greater heat and exacerbate material degradation. Load 

significantly influences wear, as high force hastens 

deterioration via plastic deformation and material loss. 

Additionally, the fiber content in composite materials can 

enhance wear resistance by fortifying the matrix 

structure. 

Residual and main effects figs assist in 

assessing the impact of each parameter. If residuals 

exhibit a normal distribution without trends, the model is 

deemed valid for prediction. Table 9 shown the multi-

response analysis looks at all of these things at the same 

time to improve wear performance. The process involves 

analysing multiple output variables, including wear rate, 

coefficient of friction (COF), and surface roughness. 

Table 9 Experimental design for sliding wear 

using L-27 OAs along with its output response 

characteristics for Multi responses. 

Figure 6 presents the primary effects plot for 

signal-to-noise ratios, utilising the "smaller is better" 

criterion, which is suitable for evaluating wear rate.  

 

Table 8. Analysis of variance for Co-efficient of Friction 

Source DF Seq SS Adj SS Adj MS F P % of Contribution 

Load, N 2 3.357 3.357 1.679 17.19 0 0.022 

Sliding Velocity (m/s) 2 142.196 142.196 71.098 728.14 0 0.953 

Fiber Content (wt.%) 2 1.708 1.708 0.854 8.75 0.002 0.011 

Error 20 1.953 1.953 0.098   
 

Total 26 149.215     
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Table 9. Experimental Design for sliding wear using L-27 OAs along with its output response characteristics 

Runs 

Control Factors Response Variables 
Multi 

Response 

value Load, N 
Sliding 

Velocity m/s 

Fiber 

Content 

wt.% 

Specific wear rate × 

10-13 mm3 /N-m 

Co-Efficient of 

Friction 

1 2 1 25 1.326 0.332 1.658 

2 2 1 50 1.311 0.317 1.627 

3 2 1 75 1.307 0.293 1.601 

4 2 2 25 1.428 0.433 1.861 

5 2 2 50 1.405 0.413 1.819 

6 2 2 75 1.387 0.393 1.781 

7 2 3 25 1.616 0.623 2.239 

8 2 3 50 1.609 0.615 2.223 

9 2 3 75 1.594 0.600 2.194 

10 3 1 25 1.336 0.343 1.679 

11 3 1 50 1.313 0.310 1.623 

12 3 1 75 1.272 0.300 1.572 

13 3 2 25 1.427 0.430 1.857 

14 3 2 50 1.405 0.415 1.820 

15 3 2 75 1.386 0.400 1.786 

16 3 3 25 1.642 0.655 2.297 

17 3 3 50 1.602 0.643 2.245 

18 3 3 75 1.603 0.610 2.213 

19 4 1 25 1.373 0.380 1.753 

20 4 1 50 1.373 0.368 1.741 

21 4 1 75 1.358 0.360 1.718 

22 4 2 25 1.403 0.448 1.851 

23 4 2 50 1.476 0.440 1.916 

24 4 2 75 1.403 0.436 1.839 

25 4 3 25 1.643 0.649 2.292 

26 4 3 50 1.642 0.648 2.290 

27 4 3 75 1.542 0.636 2.178 

 

The small graphs illustrate the variations in the 

average signal-to-noise (S/N) ratio as influenced by 

several factors: load (N), sliding velocity (m/s), and fibre 

composition (wt. %). 

The load Figure 6 demonstrates a modest 

reduction in the S/N ratio from level 2 to 4 N, suggesting 

a marginal increase in wear with elevated load. The 

sliding velocity graph indicates a pronounced decrease 

in the S/N ratio from 1 to 3 m/s, implying that the wear 

rate markedly escalates with velocity, rendering it the 

most critical factor. The fiber content plot indicates a 

modest yet steady rise in the S/N ratio from 25% to 75%, 

signifying a tiny reduction in wear as fiber content 

escalates. 

In summary, sliding velocity exerts the most 

significant influence on wear, whereas load and fiber 

content have comparatively negligible effects on the 

wear rate. 
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Figure 6. Main effects plot for S/N ratio 

 

Table 10. Multi Response Table for S/N ratio 

Level Load (N) Sliding Velocity (m/s) Fiber Content (wt.%) 

1 -5.452 -4.414 -5.701 

2 -5.489 -5.278 -5.606 

3 -5.76 -7.008 -5.394 

Delta 0.307 2.593 0.308 

Rank 3 1 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Residual plots for Multi response 
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The response Table 10 shows the signal-to-

noise (S/N) ratio data for three different levels of load, 

sliding speed, and fiber content in a composite material 

experiment. Lower (more negative) signal-to-noise ratios 

indicate worse performance. Reduced (more negative) 

signal-to-noise ratios signify inferior performance. 

Sliding Velocity exhibits the largest delta value (2.593), 

indicating it exerts the most substantial influence on the 

output, hence ranking first.  

Fiber content is ranked second with a moderate 

influence (Delta = 0.308), while load is ranked third with 

the least impact (Delta = 0.307). This analysis prioritizes 

control parameters, demonstrating that optimizing 

sliding velocity is crucial for enhancing performance 

response. 

The regression equation of Multi response= - 

2.82 - 0.154 Load, N - 1.30 Sliding Velocity m/s + 

0.00616 Fiber Content wt. % 

S =  0.271321 R − Sq =  94.8% R − Sq (adj)  =  94.2% 

       (4) 

 This Figure 7 displays four residual plots for the 

regression model titled "Multi response S/N." These 

plots are crucial for assessing the model's 

appropriateness by analyzing the properties of its 

residuals (the discrepancies between actual and 

predicted values). 

The normal probability plot of the residuals 

evaluates their adhesion to a normal distribution. The 

data points predominantly cluster near the straight blue 

line, indicating that the normalcy assumption is 

adequately satisfied. The Residuals Versus Fitted 

Values plot assists in assessing constant variance. The 

residuals are spread out randomly around zero, showing 

no clear patterns or shapes, which suggests that the 

variance is probably consistent across the range of fitted 

values [26]. The histogram of the residuals offers a visual 

depiction of their' distribution. The histogram displays a 

nearly bell-shaped distribution centered at zero, so 

reinforcing the assumption of normality. The Residuals 

Versus the Order of the Data graphic examines potential 

patterns related to the order of observations. The 

apparent random distribution of points around the zero 

line indicates that the residuals are independent of the 

data's sequence. 

The residual plots show that the "Wear rate + 

Co-efficient of friction S/N" regression model is suitable 

because it meets the key requirements of normality, 

consistent variance of the residuals, and independence 

from the order of data collection. 

 

3.3.1 Analysis of Variance for Multi responses 

The ANOVA Table 11 looks at how load, sliding 

velocity, and fiber content affect a performance measure 

by using signal-to-noise ratios. 

S = 0.152696 R-Sq = 98.58% R-Sq(adj) = 

98.15% 

Sliding velocity has the greatest influence, 

accounting for 95.7% of the overall variation, evidenced 

by its highest F-value (673.17) and p-value (0.000), 

which denote robust statistical significance. A robust 

multi-response optimization framework is proposed for 

simultaneously optimizing multiple conflicting quality 

characteristics. [27-28]. Load and fiber content 

considerably influence the output, evidenced by F-

values of 10.87 and 9.58 and p-values of 0.001, affirming 

their significance. Nonetheless, their contributions are 

rather minimal, at 1.5% and 1.4%, respectively. The 

minimal error percentage indicates a strong model fit, 

emphasizing sliding velocity as the primary variable. 

 

3.4 Grey Relational Analysis 

Grey Relational Analysis (GRA) is a method 

used to optimize process parameters by correlating 

multiple responses and their influence on wear 

behaviour. 

 

Table 11. Analysis of Variance for Multi response S/N 

Source DF Seq SS Adj SS Adj MS F P % of Contribution 

Load, N 2 0.507 0.507 0.2535 10.87 0.001 0.015 

Sliding Velocity (m/s) 2 31.3916 31.3916 15.6958 673.17 0 0.957 

Fiber Content (wt.%) 2 0.4468 0.4468 0.2234 9.58 0.001 0.014 

Error 20 0.4663 0.4663 0.0233       

Total 26 32.8118           
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Table 12. Experimental Design for sliding wear using L-27 OAs along with its output response characteristics 

Experiment 

No 
Load, N 

Sliding 

Velocity m/s 

Fiber 

Content wt.% 

Specific wear rate × 

10-13 mm3 /N-m 

Co-Efficient of 

Friction 
GRG 

1 2 1 25 1.326 0.332 0.799 

2 2 1 50 1.311 0.317 0.857 

3 2 1 75 1.307 0.293 0.921 

4 2 2 25 1.428 0.433 0.553 

5 2 2 50 1.405 0.413 0.592 

6 2 2 75 1.387 0.393 0.630 

7 2 3 25 1.616 0.623 0.352 

8 2 3 50 1.609 0.615 0.358 

9 2 3 75 1.594 0.600 0.368 

10 3 1 25 1.336 0.343 0.764 

11 3 1 50 1.313 0.310 0.868 

12 3 1 75 1.272 0.300 0.982 

13 3 2 25 1.427 0.430 0.557 

14 3 2 50 1.405 0.415 0.590 

15 3 2 75 1.386 0.400 0.624 

16 3 3 25 1.642 0.655 0.334 

17 3 3 50 1.602 0.643 0.350 

18 3 3 75 1.603 0.610 0.361 

19 4 1 25 1.373 0.380 0.662 

20 4 1 50 1.373 0.368 0.678 

21 4 1 75 1.358 0.360 0.707 

22 4 2 25 1.403 0.448 0.563 

23 4 2 50 1.476 0.440 0.514 

24 4 2 75 1.403 0.436 0.573 

25 4 3 25 1.643 0.649 0.335 

26 4 3 50 1.642 0.648 0.336 

27 4 3 75 1.542 0.636 0.376 

Ju-long first developed GRA in 1982, and this 

article elaborates on the sequential methodology 

associated with GRA optimization. Initially, the fig 8 

shown the procedure of GRA normalizes the 

experimental data to a range of 0 to 1, a process referred 

to as gray relational generation [22, 23] 

The last phase entails assessing the correlation 

between the desired and actual experimental data by 

computing the grey relational coefficient (GRC) from the 

normalised data. Each experiment involving several 

response variables is consolidated into a singular overall 

response objective by averaging the grey relational 

coefficients (GRCs) of those variables. The grey 

relational grade (GRG) [24] is employed to complete this 

assignment. This study employs analysis of variance 

(ANOVA) on the GRG data to identify the elements that 

most significantly influence the wear performance of 

silane-treated F-B-E composites. 

Table 12 outlines a methodology for an 

experiment on slide wear with L-27 orthogonal arrays 

(OAs).  
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Figure 8. GRA Procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Gray relation grades to main effect 

The objective of the experiment is to ascertain 

the influence of load, sliding velocity, and fibre 

composition on wear parameters. The input variables 

include load (N), sliding speed (m/s), and fibre content 

(wt%). The output variables are the friction coefficient 

and the specific wear rate ×10⁻³³ mm³/N-m). 

Furthermore, we provide normal outcomes for both 

responses. Elevated fibre content usually diminishes 

wear, whereas increased sliding velocity and load tend 

to intensify it. This experiment aims to enhance wear 

resistance in composite materials by identifying the most 

critical components through Taguchi's experimental 

design methodology. 

In Grey Relational Analysis (GRA), the Grey 

Relation Coefficient (GRC) quantifies the similarity 

between empirical data and an ideal reference. It 

standardised replies and enhanced multi-response 

optimisation. A higher GRC value indicates a more 

robust correlation between the measured performance 

and the expected performance, facilitating the selection 

of optimal settings. 

The primary consequences Figure 9 illustrates 

the impacts of load (N), sliding velocity (m/s), and fibre 

content (wt%) on signal-to-noise (SN) ratios. As the 

signal-to-noise ratio decreases, the outcomes improve. 

Increased velocities lead to worse (elevated) signal-to-

noise ratios, as seen by the data, which demonstrates 

that sliding velocity has the most significant influence. 

The impact of load is substantial, whereas the effect of 

fibre content is minimal, suggesting a marginal 

enhancement in performance at 75 percent weight. The 

optimal parameters for minimising the S/N ratio include 

low sliding velocity, a low load, and high fibre content.  

 



Vol 7 Iss 3 Year 2025      Yerru Kalyana Krishna et.al, /2025 

Int. Res. J. Multidiscip. Technovation, 7(3) (2025) 365-382 | 379 

Table 13. Response Table for GRG 

Level Load (N) Sliding Velocity (m/s) Fiber Content (wt.%) 

1 4.932 4.997 5.894 

2 1.966 4.787 9.07 

3 5.685 5.376 4.761 

Delta 0.962 7.104 0.925 

Rank 2 1 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Residual plots for GRG 

Table 14. Analysis of variance for GRG 

Source DF Seq SS Adj SS Adj MS F P % of Contribution 

Load, N 2 5.207 5.207 2.604 8.77 0.002 0.021 

Sliding Velocity (m/s) 2 230.322 230.322 115.161 387.78 0 0.938 

Fiber Content (wt.%) 2 3.988 3.988 1.994 6.71 0.006 0.016 

Error 20 5.94 5.94 0.297       

Total 26 245.457           

 

Table 13 presents the mean response for each 

component level. Delta signifies the difference between 

the greatest and minimum averages for each factor, 

reflecting its magnitude of influence. Sliding velocity 

demonstrates the largest delta (7.104), making it the 

most significant (Rank 1). The load has a moderate delta 

of 0.962, positioning it in second place. 

The fiber content exhibits the lowest delta 

(0.925), indicating it is the least influential (rank 3). In 

fact, optimizing the reaction mostly necessitates 

managing sliding velocity, followed by load adjustment, 

although variations in fiber content exert a relatively 

negligible influence. 

The regression equation for GRG = - 2.35 + 

0.481 Load, N + 3.55 Sliding Velocity m/s - 0.0185 Fiber 

Content wt.%  

S =  0.670032 R − Sq =  95.8% R − Sq (adj)  =  95.2% 

           (5) 

The Figure 10 shows four residual plots for a 

general regression (GRG) model with an unknown 

signal-to-noise ratio. These graphs provide residual 
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distributions (the discrepancies between observed and 

anticipated values) to evaluate model fit. 

The residual normal probability plot checks the 

normal distribution. Ideally, the points should be straight, 

which they typically are, implying normalcy. The 

residuals versus fitted values plot tests homoscedasticity 

or constant residual variance across predicted values. 

The points appear randomly about zero without a 

pattern, suggesting continual variance. 

The residual histogram shows residual 

distribution in another way. A somewhat bell-shaped 

distribution near zero supports normalcy. 

Finally, the Residuals Versus the Order of the 

Data plot searches for patterns related to data collection 

order, which may show time-dependent effects. The 

dispersed points without a trend show that residuals are 

data order independent. 

These residual plots show that the GRG model 

fits the data perfectly, meeting the assumptions of 

normality, constant variance, and independence from 

data order. 

 

3.4.1 Analysis of Variance for GRG 

This ANOVA Table 14 measures the influence 

of three factors on the response variable. 

S = 0.544957 R-Sq = 97.58% R-Sq(adj) = 

96.85% 

Sliding velocity is the most important factor, 

making up 93.8% of the total variation (Seq SS = 

230.322) and has a very high F-value (387.78, p < 

0.001). Load makes up 2.1% (Seq SS = 5.207, F = 8.77, 

p = 0.002), showing a moderate but significant effect. 

Load accounts for 2.1% (Seq SS = 5.207, F = 8.77, p = 

0.002), indicating a moderate yet significant influence. 

The fiber content exerts a modest but statistically 

significant influence, accounting for 1.6% of the variation 

(Seq SS = 3.988, F = 6.71, p = 0.006). The minimal 

residual error indicates that the model accounts for the 

majority of variability, affirming sliding velocity as the 

primary determinant [18]. 

 

4. Conclusion 

The research identified A1 (Load), B1 (Sliding 

Velocity), and C3 (Fibre Content Percentage) as optimal 

settings for reducing wear rate and enhancing the 

coefficient of friction. Various approaches, including the 

Taguchi method, regression analysis, and Grey 

Relational Analysis (GRA), supported this finding. 

 The Taguchi approach effectively determined 

the ideal settings for each objective function. 

 The results were confirmed by regression 

modelling, which showed that the wear rate 

regression had an R² value of 96.1% (Adjusted 

R² = 96.5%) and that the ANOVA results for 

wear rate were 98.70% and 98.30%.  

 The regression analysis of the coefficient of 

friction produced values of 92.04% and 98.30%, 

accompanied by ANOVA results of 96.84% and 

95.90%. Multi-response regression and ANOVA 

demonstrated high accuracy, with values 

between 94.2% and 98.58%. 

 The GRA technique yielded additional 

validation, with regression values of 93.8% and 

93.0%, along with ANOVA values of 94.70% 

and 93.11%. Dependability and utilitarian 

implementation the elevated precision of multi-

objective optimisation techniques substantiates 

a robust link between experimental and 

mathematical models.  

 The optimisation strategies effectively enhanced 

the sliding- wear parameters with various 

response factors. The optimal wear process 

parameters that yielded the highest hardness in 

the F-B-E composite, resulting in the lowest 

coefficient of friction (COF) and specific wear 

rate (SWR), were identified as the configuration 

of A1, B1, and C3. The settings produced test 

conditions for a 2N load, a sliding velocity of 1 

m/s, and a fibre content of 75 wt%. 

This method is exceptionally helpful for 

analysing wear behaviour and offers a reliable 

framework for researchers and companies to enhance 

material performance in diverse settings. 

The results provide a systematic strategy for 

enhancing wear resistance in fibre-reinforced 

composites, which is beneficial for manufacturing, 

material selection, and design methodologies. The 

study's technique can provide a basis for subsequent 

research and practical applications in tribology and 

composite materials engineering. 

 

4.1 Future Work 

This study's findings establish a robust basis for 

future research aimed at optimizing wear behaviour in 

fiber-reinforced composites. Subsequent investigations 

may examine the impact of varying fibre orientations, 

hybrid composites, and environmental factors on wear 

performance. Advanced optimization methods, such as 

machine learning and artificial intelligence, can improve 

prediction modeling for wear rates and friction 

characteristics. Furthermore, we can establish real-time 

wear monitoring in industrial applications to improve 

material durability. 

Adding more types of loads, lubricated 

environments, and nanoscale reinforcements to this 

research could give the automotive, aerospace, and 

biomedical industries a lot of useful information for 
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finding high-performance materials that don't wear out 

quickly. 
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