Cancelable Biometric Template Generation using Eigenfeature Regularization
DOI:
https://doi.org/10.54392/irjmt2512Keywords:
Random Permutation, Cancelable Biometrics, Template Protection, Non-invertible TransformationAbstract
Cancelable biometrics addresses biometric data’s privacy and security concerns. We present two new cancelable biometrics template generation methods: RP-RegSt and RP-RegSb. The suggested approaches use random permutations and regularized eigenfeature extraction to generate cancelable biometrics templates, which can be reissued if compromised. We also show that applying random permutation to generate cancelable biometric templates enhances recognition accuracy. The suggested approaches are tested on six publicly accessible databases: three iris databases (UBIRIS.v1, CASIA-V1, and IITD Iris), two face databases (Georgia Tech and AT&T), and one ear database (IITD Ear). The superiority of the proposed methods is demonstrated by comparing them to three state-of-the-art random permutation-based cancelable biometric template generation techniques. The suggested approaches’ performance on challenging databases with substantial biometric image variation, such as Georgia Tech and UBIRIS, shows their robustness and efficacy. The privacy concern is addressed as the templates are irreversible (non-invertible) and immune to imposter attacks, while brute force analysis shows the templates are secure. The templates satisfy the diversity (unlinkability) and revocability properties.
References
Farooq, R.M. Bolle, T.Y.Jea, N. Ratha, (2007) Anonymous and revocable fingerprint recognition. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, USA. https://doi.org/10.1109/CVPR.2007.383382
S. Veerashetty, Virupakshappa, Ambika, Face recognition with illumination, scale and rotation invariance using multiblock ltp-glcm descriptor and adaptive ann. International Journal of System Assurance Engineering and Management, 15(1), (2024) 174–187. https://doi.org/10.1007/s13198-022-01688-0
N. Kumar, S. Singh, A. Kumar, Random permutation principal component analysis for cancelable biometric recognition. Applied Intelligence, 48, (2018) 2824–2836. https://doi.org/10.1007/s10489-017-1117-7
J.C. Bernal-Romero, J.M. Ramirez-Cortes, J.D.J. Rangel-Magdaleno, P. Gomez-Gil, H. Peregrina-Barreto, I. Cruz-Vega, A review on protection and cancelable techniques in biometric systems. IEEE Access, 11, (2023) 8531–8568. https://doi.org/10.1109/ACCESS.2023.3239387
N.K. Ratha, J.H. Connell, R.M. Bolle, Enhancing security and privacy in biometrics-based authentication systems. IBM Systems Journal, 40(3), (2001) 614–634. https://doi.org/10.1147/sj.403.0614
A.B.J. Teoh, C.T. Yuang, Cancelable biometrics realization with multispace random projections. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(5), (2007) 1096–1106. https://doi.org/10.1109/TSMCB.2007.903538
S. Cho, A.B.J. Teoh, Face template protection via random permutation maxout transform. In: Proceedings of the 2017 International Conference on Biometrics Engineering and Application. ICBEA’ 17, (2017) 21–27. https://doi.org/10.1145/3077829.3077833
D.H. Lee, S.H. Lee, N.I. Cho, (2018) Cancelable biometrics using noise embedding. In: 2018 24th International Conference on Pattern Recognition (ICPR), IEEE, China. https://doi.org/10.1109/ICPR.2018.8545121
V.S. Baghel, S.S. Ali, S. Prakash, A noninvertible transformation based technique to protect a fingerprint template. IET Image Processing, 17(13), (2023) 3645–3659. https://doi.org/10.1049/ipr2.12130
A. Sarkar, B. Singh, A cancelable biometric based secure session key agreement protocol employing elliptic curve cryptography. International Journal of System Assurance Engineering and Management, 10(5), (2019) 1023–1042. https://doi.org/10.1007/s13198-019-00832-7
N. Manisha, Kumar, Cancelable biometrics: A comprehensive survey. Artificial Intelligence Review 53, (2020) 3403–3446. https://doi.org/10.1007/s10462-019-09767-8
N. Kumar, A. Jaiswal, R.K. Agrawal, Performance evaluation of subspace methods to tackle small sample size problem in face recognition. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics. ICACCI’, (2012) 938–944. https://doi.org/10.1145/2345396.2345547
M. Turk, A. Pentland, Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), (1991) 71–86. https://doi.org/10.1162/jocn.1991.3.1.71
P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), (1997) 711–720. https://doi.org/10.1109/34.598228
B. Moghaddam, T. Jebara, A. Pentland, Bayesian face recognition. Pattern Recognition, 33(11), (2000) 1771–1782. https://doi.org/10.1016/S0031-3203(99)00179-X
J. Kim, J. Choi, J. Yi, M. Turk, Effective representation using ica for face recognition robust to local distortion and partial occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), (2005) 1977–1981. https://doi.org/10.1109/TPAMI.2005.242
T.K. Kim, H. Kim, W. Hwang, J. Kittler, Independent component analysis in a local facial residue space for face recognition. Pattern Recognition, 37(9), (2004)1873–1885. https://doi.org/10.1016/j.patcog.2004.01.019
X. He, P. Niyogi, (2003) Locality preserving projections. In: Proceedings of the 16th International Conference on Neural Information Processing Systems. NIPS’03, MIT Press, Cambridge, USA.
D. Zhou, X. Yang, N. Peng, Y. Wang, Improved-lda based face recognition using both facial global and local information. Pattern Recognition Letters, 27(6), (2006) 536–543. https://doi.org/10.1016/j.patrec.2005.09.015
A. Jaiswal, R.K. Agrawal, N. Kumar, Performance evaluation of linear subspace methods for face recognition under illumination variation. C3S2E '11: Proceedings of the Fourth International C* Conference on Computer Science and Software Engineering, (2011) 103–110. https://doi.org/10.1145/1992896.1992909
P. Punithavathi, S. Geetha, (2021) Random permutation-based linear discriminant analysis for cancelable biometric recognition. Advances in Computing and Network Communications, Springer, Singapore. https://doi.org/10.1007/978-981-33-6977-1_43
N. Kumar, M. Rawat, Rp-lpp: a random permutation based locality preserving projection for cancelable biometric recognition. Multimedia Tools and Applications 79, (2020) 2363–2381. https://doi.org/10.1007/s11042-019-08228-2
H. Yu, J. Yang, A direct lda algorithm for high-dimensional data-with application to face recognition. Pattern Recognition, 34(10), (2001) 2067–2070. https://doi.org/10.1016/S0031-3203(00)00162-X
W. Liu, Y. Wang, S.Z. Li, T. Tan, (2004) Null space approach of fisher discriminant analysis for face recognition. Biometric Authentication, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25976-3_4
X. Jiang, B. Mandal, A. Kot, Eigenfeature regularization and extraction in face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3), (2008) 383–394. https://doi.org/10.1109/TPAMI.2007.70708
V.M. Patel, N.K. Ratha, R. Chellappa, Cancelable biometrics: A review. IEEE Signal Processing Magazine 32(5), (2015) 54–65. https://doi.org/10.1109/MSP.2015.2434151
J. Zuo, N.K. Ratha, J.H. Connell, (2008) Cancelable iris biometric. In: 2008 19th International Conference on Pattern Recognition, IEEE, USA. https://doi.org/10.1109/ICPR.2008.4761886
A.B.J. Teoh, S. Cho, J. Kim, Random permutation maxout transform for cancellable facial template protection. Multimedia Tools and Applications, 77, (2018) 27733–27759. https://doi.org/10.1007/s11042-018-5956-y
O. Singh, A. Jaiswal, N. Kumar, N. Kumar, Random permutation-based linear regression for cancelable biometrics. Expert Systems, 42(2), (2024) 13652. https://doi.org/10.1111/exsy.13652
A.M. Martinez, A.C. Kak, Pca versus lda. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), (2001) 228–233. https://doi.org/10.1109/34.908974
Z. Shao, L. Li, Z. Zhang, B. Li, X. Liu, Y. Shang, B. Chen, Cancelable face recognition using phase retrieval and complex principal component analysis network. Machine Vision and Applications 35(1), (2024) 12. https://doi.org/10.1007/s00138-023-01496-x
Naseem, R. Togneri, M. Bennamoun, Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), (2010) 2106–2112. https://doi.org/10.1109/TPAMI.2010.128
A.V. Nefian, (2020). Georgia tech face database 1999.
F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, IEEE, USA. https://doi.org/10.1109/ACV.1994.341300
H.Proenca, L.A. Alexandre, Ubiris: A noisy iris image database. Image Analysis and Processing – ICIAP 2005, Springer, Berlin. https://doi.org/10.1007/11553595_119
Casia.V1: Casia-IrisV1 database. http://biometrics.idealtest.org/
A. Kumar, A. Passi, Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognition, 43(3), (2010) 1016–1026. https://doi.org/10.1016/j.patcog.2009.08.016
A. Kumar, C. Wu, Automated human identification using ear imaging. Pattern Recognition 45(3), (2012) 956–968. https://doi.org/10.1016/j.patcog.2011.06.005
N. Manisha, Kumar, on generating cancelable biometric template using reverse of boolean xor. In: 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), (2020) 1-4.
N. Kumar, Manisha, Cbrw: a novel approach for cancelable biometric template generation based on 1-d random walk. Applied Intelligence, 52(13), (2022) 15417–15435.
Y. Wu, J.P. Noonan, S. Agaian, Npcr and uaci randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology, Journal of Selected Areas in Telecommunications (JSAT), 1(2), (2011) 31–38.
M. Essaid, I. Akharraz, A. Saaidi, A. Mouhib, A new image encryption scheme based on confusion-diffusion using an enhanced skew tent map. Procedia Computer Science, 127, (2018) 539–548. https://doi.org/10.1016/j. procs.2018.01.153
M.J. Lee, A.B.J. Teoh, A. Uhl, S.N. Liang, Z. Jin, A tokenless cancellable scheme for multimodal biometric systems. Computers & Security, 108, (2021) 102350. https://doi.org/10.1016/j.cose.2021.102350
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Onkar Singh, Ajay Jaiswal, Nitin Kumar, Naveen Kumar (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.