Acute Pain Recognition using an Ensemble Learning Methods: Evaluation of Performance and Comparison

Authors

  • Manisha S. Patil Department of Computer Science Engineering, Shri Shivaji Vidya Prasarak Sanstha's Bapusaheb Shivajirao Deore College of Engineering, Dhule (MS), India Author https://orcid.org/0009-0005-8407-6399
  • Hitendra D. Patil Department of Computer Science Engineering, Shri Shivaji Vidya Prasarak Sanstha's Bapusaheb Shivajirao Deore College of Engineering, Dhule (MS), India Author

DOI:

https://doi.org/10.54392/irjmt2517

Keywords:

Pain, Feature, Classification, Facial, Physiological Signal, EMG

Abstract

Accurate assessment and classification of acute pain are critical for optimal therapy, particularly in healthcare environments in which early intervention might prevent chronic pain development. Conventional pain recognition approaches mostly depend on the self-reported information, which can be subjective by psychological factors and communication problems, especially in nonverbal organizations. Recent advancements in technology have provided new opportunities for pain recognition using facial images and biomedical signals such as electromyography (EMG). In this work, we proposed an ensemble learning-based model that combines both face images and EMG data for acute pain classification, and the CNN ShuffleNet V2 approach is used for feature extraction. Our objective for pain classification is to correct classification for pain intensity levels from T0 to T4 (no pain vs. pain). We proposed ensemble learning-based techniques like TabNet, LightGBM, Hidden Markov, and Gaussian Process for acute pain classification. We used many kinds of approaches to improve prediction performance, which created a comprehensive framework for pain classification and insights into the physiological and psychological responses to acute pain. Our analysis of results also indicates that the ensemble approach definitely surpasses previous approaches whereby TabNet model accuracy came to be 97.8%. Also, this model has great F1 score of 97.6%, as well as recall at 97.3%, while on kappa score, it goes up to 92.4%, indicating great dependability. These results present a good optimism that our ensemble learning technique could change the face of pain assessment procedures and therefore patient care in acute pain treatment.

References

M. Zerriouh, G. De Clifford-Faugère, H.L. Nguena Nguefack, M.G. Pagé, L. Guénette, L. Blais, A. Lacasse, Pain relief and associated factors: a cross-sectional observational web-based study in a Quebec cohort of persons living with chronic pain. Frontiers in Pain Research, 5, (2024) 1306479. https://doi.org/10.3389/fpain.2024.1306479

J.A. Ten Barge, M. Baudat, N.J. Meesters, A. Kindt, E.A. Joosten, I.K. Reiss, G.E. van den Bosch, Biomarkers for assessing pain and pain relief in the neonatal intensive care unit. Frontiers in Pain Research, 5, (2024)1343551. https://doi.org/10.3389/fpain.2024.1343551

L. Mears, J. Mears, The pathophysiology, assessment, and management of acute pain. British Journal of Nursing, 32(2), (2023) 58-65. https://doi.org/10.12968/bjon.2023.32.2.58

A.R. Wahab Sait, A.K. Dutta, Ensemble Learning-Based Pain Intensity Identification Model Using Facial Expressions. Journal of Disability Research, 3(3), (2024) 20240029. https://doi.org/10.57197/JDR-2024-0029

G. Bargshady, X. Zhou, R. C. Deo, J. Soar, F. Whittaker, H. Wang, Ensemble neural network approach detecting pain intensity from facial expressions. Artificial Intelligence in Medicine, 109, (2020) 101954. https://doi.org/10.1016/j.artmed.2020.101954

S. Alphonse, S. Abinaya, N. Kumar, Pain assessment from facial expression images utilizing Statistical Frei-Chen Mask (SFCM)-based features and DenseNet. Journal of Cloud Computing, 13(1), (2024) 142. https://doi.org/10.1186/s13677-024-00706-9

J. Huo, Y. Yu, W. Lin, A. Hu, C. Wu, Application of AI in multilevel pain assessment using facial images: systematic review and meta-analysis. Journal of Medical Internet Research, 26, (2024) e51250. https://doi.org/10.2196/51250

R. Gutierrez, J. Garcia-Ortiz, W. Villegas-Ch, Multimodal AI techniques for pain detection: integrating facial gesture and paralanguage analysis. Frontiers in Computer Science, 6, (2024) 1424935. https://doi.org/10.3389/fcomp.2024.1424935

S. Gkikas, N.S. Tachos, S. Andreadis, V.C. Pezoulas, D. Zaridis, G. Gkois, A. Matonaki, T.G. Stavropoulos, D.I. Fotiadis, Multimodal automatic assessment of acute pain through facial videos and heart rate signals utilizing transformer-based architectures. Frontiers in Pain Research, 5, (2024) 1372814. https://doi.org/10.3389/fpain.2024.1372814

F. Pouromran, Y. Lin, and S. Kamarthi, Personalized Deep Bi-LSTM RNN based model for pain intensity classification using EDA signal. Sensors, 22(21), (2022) 8087. https://doi.org/10.3390/s22218087

P.D. Barua, N. Baygin, S. Dogan, M. Baygin, N. Arunkumar, H. Fujita, T. Tuncer, R.S. Tan, E. Palmer, M. Mokhzaini Bin Azizan, N.A. Kadri, U.R. Acharya, Automated detection of pain levels using deep feature extraction from shutter blinds-based dynamic-sized horizontal patches with facial images. Scientific Reports, 12(1), (2022) 17297. https://doi.org/10.1038/s41598-022-21380-4

E. Othman, P. Werner, F. Saxen, M.A. Fiedler, A. Al-Hamadi, An Automatic System for Continuous Pain Intensity Monitoring Based on Analyzing Data from Uni-, Bi-, and Multi-Modality. Sensors, 22(13), (2022) 4992. https://doi.org/10.3390/s22134992

P. Thiam, H. Kestler, F. Schwenker, (2020) Multimodal Deep Denoising Convolutional Autoencoders for Pain Intensity Classification based on Physiological Signals. in Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods, Scitepress - Science and Technology Publicationsm 289–296. https://doi.org/10.5220/0008896102890296

M.K. Hasan, G.M.T. Ahsan, S.I. Ahamed, R. Love, R. Salim, Pain Level Detection From Facial Image Captured by Smartphone. Journal of Information Processing, 24(4), (2016) 598-608. https://doi.org/10.2197/ipsjjip.24.598

M. Feighelstein, L. Henze, S. Meller, I. Shimshoni, B. Hermoni, M. Berko, F. Twele, A. Schütter, N. Dorn, S. Kästner, L. Finka, S.P.L. Luna, D.S. Mills, H.A. Volk, A. Zamansky, Explainable automated pain recognition in cats. Scientific reports, 13(1), (2023) 8973. https://doi.org/10.1038/s41598-023-35846-6

R. Fernandez Rojas, N. Hirachan, N. Brown, G. Waddington, L. Murtagh, B. Seymour, R. Goecke, Multimodal physiological sensing for the assessment of acute pain. Frontiers in Pain Research, 4, (2023) 1150264. https://doi.org/10.3389/fpain.2023.1150264

“BioVid Heat Pain Database,” nit. Accessed: Jul. 06, 2024. [Online]. Available: https://www.nit.ovgu.de/-p-1358.html.

N. Ma, X. Zhang, H.T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), (2018) 116-131. https://doi.org/10.1007/978-3-030-01264-9_8

S. Ioffe, C. Szegedy, (2015) Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv.

Y. Chen, Z. Zhang, Z. Chen, Y. Zhang, J. Wang, Fine-Grained Classification of Optical Remote Sensing Ship Images Based on Deep Convolution Neural Network. Remote Sensing, 14(18), (2022) 4566. https://doi.org/10.3390/rs14184566

M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, (2019) 6105-6114.

C. Chatterjee, N. Shah, S. Bhatt, S. Chandi, (2024) A Survey on Multi-modal Emotion Detection Techniques. Research Square. https://doi.org/10.21203/rs.3.rs-3942784/v1

J. Qian, J. Yang, Y. Xu, J. Xie, Z. Lai, B. Zhang, Image decomposition based matrix regression with applications to robust face recognition. Pattern Recognition, 102, (2020) 107204. https://doi.org/10.1016/j.patcog.2020.107204

M.-P. Hosseini, A. Hosseini, K. Ahi, “A Review on Machine Learning for EEG Signal Processing in Bioengineering. IEEE Reviews in Biomedical Engineering, 14, (2021) 204–218. https://doi.org/10.1109/RBME.2020.2969915

A. V. Dorogush, V. Ershov, A. Gulin, (2018) CatBoost: gradient boosting with categorical features support. arXiv.

T. Chen, C. Guestrin, (2016) XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, USA. https://doi.org/10.1145/2939672.2939785

M. Feurer, F. Hutter, (2019) Hyperparameter Optimization. Automated Machine Learning, Springer International Publishing, 3–33. https://doi.org/10.1007/978-3-030-05318-5_1

C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), (2021) 1937–1967. https://doi.org/10.1007/s10462-020-09896-5

M. Dong, L. Yao, X. Wang, B. Benatallah, S. Zhang, Q. Z. Sheng, Gradient Boosted Neural Decision Forest. IEEE Transactions on Services Computing, 16(1), (2023) 330-342. https://doi.org/10.1109/TSC.2021.3133673

X. Xu, X. Wang, Z. Sun, S. Wang, Face recognition technology based on CNN, XGBoost, model fusion and its application for safety management in power system. IOP Conference Series: Earth and Environmental Science, 645(1), (2021) 012054. https://doi.org/10.1088/1755-1315/645/1/012054

V.K. Mishra, A. Rajagopalan, A Novel Extreme Value Theory Based approach to Hyperparameter Optimization. Procedia Computer Science, 218, (2023) 2411–2419. https://doi.org/10.1016/j.procs.2023.01.216

G. Chandrashekar, F. Sahin, A survey on feature selection methods. Computers & Electrical Engineering, 40(1), (2014) 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024

S.Ö. Arik, T. Pfister, TabNet: Attentive Interpretable Tabular Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), (2021) 6679–6687. https://doi.org/10.1609/aaai.v35i8.16826

S. Kamil Gatfan, A Review on Deep Learning For Electroencephalogram Signal Classification. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(1), (2024)137–151. https://doi.org/10.29304/jqcsm.2024.16.11453

D.R. Cutler, T.C. Edwards, K.H. Beard, A. Cutler, K.T. Hess, J. Gibson, J.J. Lawler, Random forests for classification in ecology. Ecology, 88(11), (2007) 2783-2792. https://doi.org/10.1890/07-0539.1

B.D. Romaissa, O. Mourad, N. Brahim, (2021) Vision-Based Multi-Modal Framework for Action Recognition. 25th International Conference on Pattern Recognition (ICPR), IEEE, Italy. https://doi.org/10.1109/ICPR48806.2021.9412863

M. Hajihosseinlou, A. Maghsoudi, R. Ghezelbash, A Novel Scheme for Mapping of MVT-Type Pb–Zn Prospectivity: LightGBM, a Highly Efficient Gradient Boosting Decision Tree Machine Learning Algorithm. Natural Resources Research, 32(6), (2023) 2417–2438. https://doi.org/10.1007/s11053-023-10249-6

W.Y. Chen, T.C. Wang, R.S. Guo, C. Chen, Integrating Latent Dirichlet Allocation and Gradient Boosting Tree Methodology for Insurance Product Development Recommendation. in 2024 9th International Conference on Big Data Analytics (ICBDA), IEEE, Japan. https://doi.org/10.1109/ICBDA61153.2024.10607213

R. Szczepanek, Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM and CatBoost. Hydrology, 9(12), (2022) 226. https://doi.org/10.3390/hydrology9120226

Y.C. Chu, S.S.S. Chen, K.B. Chen, J.S. Sun, T.K. Shen, L.K. Chen, Enhanced labor pain monitoring using machine learning and ECG waveform analysis for uterine contraction-induced pain. BioData Mining, 17(1), (2024) 32. https://doi.org/10.1186/s13040-024-00383-z

Y. Khalifa, D. Mandic, E. Sejdić, A review of Hidden Markov models and Recurrent Neural Networks for event detection and localization in biomedical signals. Information Fusion, 69, (2021) 52–72. https://doi.org/10.1016/j.inffus.2020.11.008

H. Salam, O. Celiktutan, H. Gunes, M. Chetouani, (2022) Automatic Context-Driven Inference of Engagement in HMI: A Survey. arXiv.

C. Li, A. Pourtaherian, L. Van Onzenoort, W.E.T.A. Ten, P.H.N. De With, Infant Facial Expression Analysis: Towards a Real-Time Video Monitoring System Using R-CNN and HMM. IEEE Journal of Biomedical and Health Informatics, 25(5), (2021) 1429–1440. https://doi.org/10.1109/JBHI.2020.3037031

M. Capecci, M.G. Ceravolo, F. Ferracuti, S. Iarlori, V. Kyrki, A. Monteriu, F. Verdini, A Hidden Semi-Markov Model based approach for rehabilitation exercise assessment. Journal of biomedical informatics, 78, (2018) 1-11. https://doi.org/10.1016/j.jbi.2017.12.012

A. Sumayli, S.M. Alshahrani, Modeling and prediction of biodiesel production by using different artificial intelligence methods: Multi-layer perceptron (MLP), Gradient boosting (GB), and Gaussian process regression (GPR). Arabian Journal of Chemistry, 16(7), (2023) 104801. https://doi.org/10.1016/j.arabjc.2023.104801

A.L. Muyskens, I.R. Goumiri, B.W. Priest, , Schneider, M. D., Armstrong, R. E., Bernstein, J., & Dana, R. (2022). Star–galaxy image separation with computationally efficient gaussian process classification. The Astronomical Journal, 163(4), 148. https://doi.org/10.3847/1538-3881/ac4e93

H. Liu, Y.S. Ong, X. Shen, J. Cai, When Gaussian Process Meets Big Data: A Review of Scalable GPs. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4405–4423. https://doi.org/10.1109/TNNLS.2019.2957109

S. Grothus, A. Sommer, L. Stahlschmidt, G. Hirschfeld, L. Höfel, R. Linder, J. Wager, (2024). Pediatric chronic pain grading: a revised classification of the severity of pediatric chronic pain. Pain, 165(9), 2087-2097. https://doi.org/10.1097/j.pain.0000000000003226

B.T. Susam, N.T. Riek, M. Akcakaya, X. Xu, V.R. de Sa, H. Nezamfar, D. Diaz, K.D. Craig, M.S. Goodwin, J.S. Huang, (2021) Automated pain assessment in children using electrodermal activity and video data fusion via machine learning. IEEE Transactions on Biomedical Engineering, 69(1), 422-431. https://doi.org/10.1109/TBME.2021.3096137

A. Semwal, N.D. Londhe, Computer aided pain detection and intensity estimation using compact CNN based fusion network. Applied Soft Computing, 112, (2021)107780. https://doi.org/10.1016/j.asoc.2021.107780

G. Bargshady, X. Zhou, R. C. Deo, J. Soar, F. Whittaker, H. Wang, Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert systems with applications, 149, (2020) 113305. https://doi.org/10.1016/j.eswa.2020.113305

S. El Morabit, A. Rivenq, M.E. Zighem, A. Hadid, A. Ouahabi, A. Taleb-Ahmed, Automatic pain estimation from facial expressions: A comparative analysis using off-the-shelf CNN architectures. Electronics, 10(16), (2021) 1926. https://doi.org/10.3390/electronics10161926

Downloads

Published

2025-01-22

How to Cite

1.
S. Patil M, D. Patil H. Acute Pain Recognition using an Ensemble Learning Methods: Evaluation of Performance and Comparison. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Jan. 22 [cited 2025 Oct. 3];7(1):102-14. Available from: https://asianrepo.org/index.php/irjmt/article/view/105