A Review of Deep Learning Models for Early Detection and Diagnosis of Ovarian Cancer

Authors

  • Savitha D Department of Computer Science, Nandha Arts and Science College, Erode, Tamil Nadu, India. Author https://orcid.org/0009-0008-9625-3884
  • Rajakumari D Department of Computer Science, Nandha Arts and Science College, Erode, Tamil Nadu, India. Author

DOI:

https://doi.org/10.54392/irjmt2519

Keywords:

Healthcare Analysis, Ovarian Cancer Diagnosis, Machine Learning, Deep Learning, Early Detection

Abstract

Ovarian cancer ranks seventh worldwide and is the third most common type of cancer diagnosed in women in India. Numerous studies have demonstrated that the number of people affected by ovarian cancer is expected to rise significantly in the future. Proactive measures for early cancer detection are essential to prevent death and recurrence. This paper attempts to review the various deep learning (DL) models in ovarian cancer diagnosis, including detecting risk factors, analyzing genomic data sets, predicting disease progression, recurrence, and mortality rates, and identifying correlations and patterns. The patient's electronic health records contain effective analytics on imaging and other types of data that may open the door to more accurate or early identification of ovarian cancer. The taxonomy of the several ways that DL aids in the diagnosis, early detection, and treatment of ovarian cancer will be compiled in this review article. As per the reviews, more research studies have examined the Convolutional Neural Networks (CNNs) approach for the Early Detection and Diagnosis of Ovarian Cancer. This is because CNNs are a popular and potent architecture for image classification tasks because of their capacity to learn spatial and hierarchical features from images effectively. The review article seeks to give future research topics and assess the state-of-the-art application of DL algorithms for ovarian cancer diagnosis.

References

Z. Momenimovahed, A. Tiznobaik, S. Taheri, H. Salehiniya, Ovarian cancer in the world: epidemiology and risk factors. International journal of women's health, (2019) 287-299. https://doi.org/10.2147/IJWH.S197604

D. Jelovac, D.K. Armstrong, Recent progress in the diagnosis and treatment of ovarian cancer. CA: a cancer journal for clinicians, 61(3), (2011) 183-203. https://doi.org/10.3322/caac.20113

E. Kawakami, J. Tabata, N. Yanaihara, T. Ishikawa, K. Koseki, Y. Iida, M. Saito, H. Komazaki, J.S. Shapiro, C. Goto, Y. Akiyama, R. Saito, M. Saito, H. Takano, K. Yamada, A. Okamoto, Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers. Clinical cancer research, 25(10), (2019) 3006-3015. https://doi.org/10.1158/1078-0432.CCR-18-3378

N. Linder, J.C. Taylor, R. Colling, R. Pell, E. Alveyn, J. Joseph, A. Protheroe, M. Lundin, J. Lundin, C. Verrill, Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours. Journal of clinical pathology, 72(2), (2019) 157-164. https://doi.org/10.1136/jclinpath-2018-205328

M. D’Acunto, M. Martinelli, D. Moroni, from human mesenchymal stromal cells to osteosarcoma cells classification by deep learning. Journal of Intelligent & Fuzzy Systems, 37(6), (2019) 7199-7206. https://doi.org/10.3233/JIFS-179332

M. Arbyn, E. Weiderpass, L. Bruni, S. de Sanjosé, M. Saraiya, J. Ferlay, F. Bray, Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. The Lancet Global Health, 8(2), (2020) e191-e203. https://doi.org/10.1016/S2214-109X(19)30482-6

P.A.T.E. Board, (2024) PDQ Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment. Bethesda, MD: National Cancer Institute. Available at: https://www.cancer.gov/types/ovarian/hp/ovarian-epithelial-treatment-pdq

W.O.C. Coalition, (2022). Global Ovarian Cancer Charter Data Briefing. Available at: https://worldovariancancercoalition.org/wp-content/uploads/2022/02/Global-Priority_Final.pdf

K. Sathishkumar, M. Chaturvedi, P. Das, S. Stephen, P. Mathur, Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India. Indian Journal of Medical Research, 156(4&5), (2022) 598-607. https://doi.org/10.4103/ijmr.ijmr_1821_22

M. Chaturvedi, S. Krishnan, P. Das, K.L. Sudarshan, S. Stephen, V. Monesh, P. Mathur, Descriptive Epidemiology of Ovarian Cancers in India: A Report from National Cancer Registry Programme. Indian Journal of Gynecologic Oncology, 21(1), (2023) 25. https://doi.org/10.1007/s40944-022-00694-1

L. Allahqoli, A. Mazidimoradi, F. Rezaei, Z. Pasokh, S. Hakimi, Z. Momenimovahed, S.Z. Aghamohammadi, A.Rahmani, A. Fallahi, A. Karimzadeh, H. Salehiniya I. Alkatout, Global Trend of Ovarian Cancer Among old age women: an Analysis by Socio-Demographic Index and Geographic Regions. Indian Journal of Gynecologic Oncology, 22(4), (2024) 1-25. https://doi.org/10.1007/s40944-024-00915-9

R.J. Kate, R. Nadig, Stage-specific predictive models for breast cancer survivability. International journal of medical informatics, 97, (2017) 304-311. https://doi.org/10.1016/j.ijmedinf.2016.11.001

S. Walczak, V. Velanovich, Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks. Decision Support Systems, 106, (2018) 110-118. https://doi.org/10.1016/j.dss.2017.12.007

R. Takiar, Status of ovarian cancer in India (2012–14). EC Gynaecology, 8(5), (2019) 358-364.

I. Kaur, M.N. Doja, T. Ahmad, M. Ahmad, A. Hussain, A. Nadeem, A.A. Abd El-Latif, An integrated approach for cancer survival prediction using data mining techniques. Computational Intelligence and Neuroscience, 2021(1), (2021) 6342226. https://doi.org/10.1155/2021/6342226

U. H. Weidle, F. Birzele, G. Kollmorgen, R. Rueger, Mechanisms and targets involved in dissemination of ovarian cancer. Cancer genomics & proteomics, 13(6), (2016) 407-423. https://doi.org/10.21873/cgp.20004

V. Schilling, P. Beyerlein, J. Chien, A Bioinformatics Analysis of Ovarian Cancer Data Using Machine Learning. Algorithms, 16(7), (2023) 330. https://doi.org/10.3390/a16070330

Y.T. Jan, P.S. Tsai, W.H. Huang, L.Y. Chou, S.C. Huang, J.Z. Wang, P.H. Lu, D.C. Lin, C.S. Yen, J.P. Teng, G.S. P. Mok, C.T. Shih, T.H. Wu, Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors. Insights into Imaging, 14(1), (2023) 68. https://doi.org/10.1186/s13244-023-01412-x

F. Christiansen, E. Epstein, E. Smedberg, M. Åkerlund, K. Smith, E. Epstein, Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment. Ultrasound in Obstetrics & Gynecology, 57(1), (2021) 155-163. https://doi.org/10.1002/uog.23530

T. Saida, K. Mori, S. Hoshiai, M. Sakai, A. Urushibara, T. Ishiguro, M. Minami, T. Satoh, T. Nakajima, T. Nakajima, Diagnosing ovarian cancer on MRI: a preliminary study comparing deep learning and radiologist assessments. Cancers, 14(4), (2022) 987. https://doi.org/10.3390/cancers14040987

M. H. Sadeghi, S. Sina, M. Alavi, F. Giammarile, The OCDA-Net: a 3D convolutional neural network-based system for classification and staging of ovarian cancer patients using [18F] FDG PET/CT examinations. Annals of Nuclear Medicine, 37(12), (2023) 645-654. https://doi.org/10.1007/s12149-023-01867-4

S.J. Kumar, G.P. Kanna, D.P. Raja, Y. Kumar, A Comprehensive Study on Deep Learning Models for the Detection of Ovarian Cancer and Glomerular Kidney Disease using Histopathological Images. Archives of Computational Methods in Engineering, (2024) 1-27. https://doi.org/10.1007/s11831-024-10130-6

A. Laios, A. Katsenou, Y.S. Tan, R. Johnson, M. Otify, A. Kaufmann, S. Munot, A. Thangavelu, R. Hutson, T. Broadhead, G. Theophilou, D. Nugent, D. De Jong, Feature selection is critical for 2-year prognosis in advanced stage high grade serous ovarian cancer by using machine learning. Cancer Control, 28, (2021) 10732748211044678. https://doi.org/10.1177/10732748211044678

M.M. Ahamad, S. Aktar, M.J. Uddin, T. Rahman, S.A. Alyami, S. Al-Ashhab, H. F. Akhdar, H.F. Akhdar, M.A. Moni, Early-stage detection of ovarian cancer based on clinical data using machine learning approaches. Journal of personalized medicine, 12(8), (2022) 1211. https://doi.org/10.3390/jpm12081211

M. Akazawa, K. Hashimoto, Artificial intelligence in ovarian cancer diagnosis. Anticancer research, 40(8), (2020) 4795-4800. https://doi.org/10.21873/anticanres.14482

M.A. Vázquez, I.P. Mariño, O. Blyuss, A. Ryan, A. Gentry-Maharaj, J. Kalsi, R. Manchanda, I. Jacobs, U. Menon, A. Zaikin, A quantitative performance study of two automatic methods for the diagnosis of ovarian cancer. Biomedical signal processing and control, 46, (2018) 86-93. https://doi.org/10.1016/j.bspc.2018.07.001

M. Wu, C. Yan, H. Liu, Q. Liu, Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks. Bioscience reports, 38(3), (2018) BSR20180289. https://doi.org/10.1042/BSR20180289

L. Zhu, Y. He, N. He, L. Xiao, Computed Tomography Image Based on Intelligent Segmentation Algorithm in the Diagnosis of Ovarian Tumor. Scientific Programming, 2021, (2021) 1-10. https://doi.org/10.1155/2021/7323654

Y. Wang, H. Zhang, T. Wang, L. Yao, G. Zhang, X. Liu, L. Yuan, Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging. Scientific Reports, 13(1), (2023) 2770. https://doi.org/10.1038/s41598-023-29814-3

X. Guo, G. Zhao, Establishment and verification of logistic regression model for qualitative diagnosis of ovarian cancer based on MRI and ultrasound signs. Computational and Mathematical Methods in Medicine, 2022, (2022). https://doi.org/10.1155/2022/7531371

H. Wang, C. Liu, Z.Z hao, C. Zhang, X. Wang, H. Li, H. Wu, X. Liu, C. Li, L. Qi, W. Ma, Application of deep convolutional neural networks for discriminating benign, borderline, and malignant serous ovarian tumors from ultrasound images. Frontiers in oncology, 11, (2021) 770683. https://doi.org/10.3389/fonc.2021.770683

M.C. Comes, F. Arezzo, G. Cormio, S. Bove, A. Calabrese, A. Fanizzi, A. Kardhashi, D. La Forgia, F. Legge, I. Romagno, Vera Loizzi, R. Massafra, An explainable machine learning ensemble model to predict the risk of ovarian cancer in BRCA-mutated patients undergoing risk-reducing salpingo-oophorectomy. Frontiers in Oncology, 13, (2023) 1181792. https://doi.org/10.3389/fonc.2023.1181792

S. Althubiti, J. Escorcia-Gutierrez, M. Gamarra, R. Soto-Diaz, R. F. Mansour, F. Alenezi, "Improved metaheuristics with machine learning enabled medical decision support system. Computers, Materials and Continua, 73(2), (2022) 2423-2439. https://doi.org/10.32604/cmc.2022.028878

R.M. Ghoniem, A.D. Algarni, B. Refky, A.A. Ewees, Multi-modal evolutionary deep learning model for ovarian cancer diagnosis. Symmetry, 13(4), (2021) 643. https://doi.org/10.3390/sym13040643

P.H. Nagarajan, N. Tajunisha, Optimal Parameter Selection-Based Deep Semi-Supervised Generative Learning and Cnn for Ovarian Cancer Classification. ICTACT Journal on Soft Computing, 13(2), (2023).

D. Schwartz, T.W. Sawyer, N. Thurston, J. Barton, G. Ditzler, Ovarian cancer detection using optical coherence tomography and convolutional neural networks. Neural Computing and Applications, 34(11), (2022) 8977-8987. https://doi.org/10.1007/s00521-022-06920-3

Y. Jung, T. Kim, M.R. Han, S. Kim, G. Kim, S. Lee, Y.J. Choi, Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder. Scientific Reports, 12(1), (2022) 17024. https://doi.org/10.1038/s41598-022-20653-2

X. Wang, H. Li, P. Zheng, Automatic Detection and Segmentation of Ovarian Cancer Using a Multitask Model in Pelvic CT Images. Oxidative Medicine and Cellular Longevity, 2022, (2022). https://doi.org/10.1155/2022/6009107

D. Sengupta, S. N. Ali, A. Bhattacharya, J. Mustafi, A. Mukhopadhyay, K. Sengupta, A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology. PloS one, 17(1), (2022) e0261181. https://doi.org/10.1371/journal.pone.0261181

C.W. Wang, Y.C. Lee, C.C. Chang, Y.J. Lin, Y.A. Liou, P.C. Hsu, C.C. Chang, A.K.O. Sai, C.H. Wang, T.K. Chao, A weakly supervised deep learning method for guiding ovarian cancer treatment and identifying an effective biomarker. Cancers, 14(7), (2022) 1651. https://doi.org/10.3390/cancers14071651

L. Ye, Y. Zhang, X. Yang, F. Shen, B. Xu, An ovarian cancer susceptible gene prediction method based on deep learning methods. Frontiers in Cell and Developmental Biology, 9, (2021) 730475. https://doi.org/10.3389/fcell.2021.730475

Z. Zhang, Y. Han, Detection of ovarian tumors in obstetric ultrasound imaging using logistic regression classifier with an advanced machine learning approach. IEEE Access, 8, (2020) 44999-45008. https://doi.org/10.1109/ACCESS.2020.2977962

H. Chen, B.W. Yang, L. Qian, Y.S. Meng, X.H. Bai, X.W. Hong, X. He, M.J. Jiang, F. Yuan, Q.W. Du, W.W. Feng, Deep learning prediction of ovarian malignancy at US compared with O-RADS and expert assessment. Radiology, 304(1), (2022) 106-113. https://doi.org/10.1148/radiol.211367

Y. Urase, M. Nishio, Y. Ueno, A.K. Kono, K. Sofue, T. Kanda T. Maeda, M. Nogami, M. Hori, T. Murakami, Simulation study of low-dose sparse-sampling ct with deep learning-based reconstruction: usefulness for evaluation of ovarian cancer metastasis. Applied Sciences, 10(13), (2020) 4446. https://doi.org/10.3390/app10134446

R. Lei, Y. Yu, Q. Li, Q. Yao, J. Wang, M. Gao, Z. Wu, W. Ren, Y. Tan, B. Zhang, L. Chen, Z. Lin, H. Yao, Deep learning magnetic resonance imaging predicts platinum sensitivity in patients with epithelial ovarian cancer. Frontiers in Oncology, 12, (2022) 895177. https://doi.org/10.3389/fonc.2022.895177

K. R. Kasture, A new deep learning method for automatic ovarian cancer prediction & subtype classification. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(12), (2021) 1233-1242.

B. Ziyambe, A. Yahya, T. Mushiri, M.U. Tariq, Q. Abbas, M. Babar, M. Albathan, M. Asim, S. Jabbar, A deep learning framework for the prediction and diagnosis of ovarian cancer in pre-and post-menopausal women. Diagnostics, 13(10), (2023) 1703. https://doi.org/10.3390/diagnostics13101703

H. Zhuang, B. Li, J. Ma, P. Monkam, W. Qian, D. He, An attention-based deep learning network for predicting Platinum resistance in ovarian cancer. IEEE Access, 12, (2024) 41000-41008. https://doi.org/10.1109/ACCESS.2024.3377560

L. Bote-Curiel, S. Ruiz-Llorente, S. Muñoz-Romero, M. Yagüe-Fernández, A. Barquín, J. García-Donas, J. L. Rojo-Álvarez, Multivariate feature selection and autoencoder embeddings of ovarian cancer clinical and genetic data. Expert Systems with Applications, 206, (2022) 117865. https://doi.org/10.1016/j.eswa.2022.117865

A. Kodipalli, S.L. Fernandes, V. Gururaj, S. Varada Rameshbabu, S. Dasar, Performance Analysis of Segmentation and Classification of CT-Scanned Ovarian Tumours Using U-Net and Deep Convolutional Neural Networks. Diagnostics, 13(13), (2023) 2282. https://doi.org/10.3390/diagnostics13132282

M. Mukhedkar, D. Rohatgi, V.A. Vuyyuru, K. Ramakrishna, Y.A. B. El-Ebiary, V.A.A. Daniel, Feline Wolf Net: A Hybrid Lion-Grey Wolf Optimization Deep Learning Model for Ovarian Cancer Detection. International Journal of Advanced Computer Science and Applications, 14(9), (2023). https://dx.doi.org/10.14569/IJACSA.2023.0140962

C. Ch, N. Bhavani, (2023) Innovative Long Short-Term Memory is a more accurate and efficient method of predicting the stage of ovarian cancer than Multi-Layer Perceptron. in 2023 9th International Conference on Smart Structures and Systems (ICSSS), IEEE, India. https://doi.org/10.1109/ICSSS58085.2023.10407508

A. Boyanapalli, A. Shanthini, Ovarian cancer detection in computed tomography images using ensembled deep optimized learning classifier. Concurrency and Computation: Practice and Experience, 35(22), (2023) e7716. https://doi.org/10.1002/cpe.7716

M. Xi, R. Zheng, M. Wang, X. Shi, C. Chen, J. Qian, X. Gu, J. Zhou, Ultrasonographic diagnosis of ovarian tumors through the deep convolutional neural network. Ginekologia Polska, 95(3), (2024) 181-189. https://doi.org/10.5603/gpl.94956

S. Srivastava, P. Kumar, V. Chaudhry, A. Singh, Detection of ovarian cyst in ultrasound images using fine-tuned VGG-16 deep learning network. SN Computer Science, 1(2), (2020) 81. https://doi.org/10.1007/s42979-020-0109-6

H.R. Farhan, M.S. Kod, A. Taqi, S.A. Ghazi, Ovarian Cancer Detection Based on Elman Recurrent Neural Network. Periodica Polytechnica Electrical Engineering and Computer Science, 68(2), (2024) 202–212. https://doi.org/10.3311/PPee.23081

S.R. Kongara, S. Prakasha, A. Brindha, S.K. Pathak, J. Miya, S.N. Taqui, H.S. Almoallim, S.A. Alharbi, S.S. Raghavan, Performance evaluation of optimized convolutional neural network mechanism in the detection and classification of ovarian cancer. Multimedia Tools and Applications, (2024) 1-24.

A. Kodipalli, S.L. Fernandes, S. Dasar, An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images. Diagnostics, 14(5), (2024) 543. https://doi.org/10.3390/diagnostics14050543

I. Rasool, A. Hussain, A. Assad, T.A. Masoodi, M.R. Bhat, M.A. Macha, A weakly supervised deep learning approach for guiding ovarian cancer treatment in prognosis: gigapixel histopathology analysis for personalized therapeutic response. International Journal of System Assurance Engineering and Management, (2024) 1-11. https://doi.org/10.1007/s13198-024-02390-z

Downloads

Published

2025-01-27

How to Cite

1.
D S, D R. A Review of Deep Learning Models for Early Detection and Diagnosis of Ovarian Cancer. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Jan. 27 [cited 2025 Oct. 3];7(1):123-37. Available from: https://asianrepo.org/index.php/irjmt/article/view/107