Nanoscience Approaches in Treating Urinary Tract Infection with Existing Antibiotic Therapy
DOI:
https://doi.org/10.54392/irjmt25112Keywords:
Nanoscience, Green Nanotechnology, MDR, ABR, Nano-Antibiotics (Nabts), Urinary Tract Infection, Uropathogens, Antibiotic TherapyAbstract
A serious worldwide health emergency has been brought on by the growth of multidrug-resistant (MDR) microorganisms, which are difficult to treat with traditional antimicrobial drugs. This emphasises how urgently novel therapeutic approaches are needed to combat antimicrobial drug resistance (ABR). To increase the efficacy of treatment for resistant microorganisms, one such tactic, known as nAbts mixes antimicrobial medications with nanoparticles. This work looks at the development of nano-based treatment systems to treat ABR, specifically urinary tract infections brought on by pathogenic microbes. Important results show that nAbts are more effective than conventional antibiotics. For instance, in vitro research showed that silver nanoparticle-based nAbts decreased bacterial growth in ciprofloxacin-resistant Escherichia coli strains by 98%, as opposed to the 30–40% reduction seen with ciprofloxacin alone. The capacity of the nanoparticles to break down bacterial cell walls, boost medication penetration, and enable targeted delivery—thereby circumventing resistance mechanisms—is responsible for this notable increase in antimicrobial activity. With their capacity to break down bacterial cell walls and promote intracellular drug accumulation, nAbts hold enormous promise for defeating resistance and providing a major breakthrough in the management of multidrug-resistant illnesses. The promise of nAbts to offer safer, more focused, and more successful treatment alternatives for ABR is highlighted in this publication.
References
F.M.E. Wagenlehner, T.E.B. Johansen, T. Cai, B. Koves, J. Kranz, A. Pilatz, Z. Tandogdu, Epidemiology, definition and treatment of complicated urinary tract infections. Nature Reviews Urology, 17(10), (2020) 586–600. https://doi.org/10.1038/s41585-020-0362-4
X. Yang, H. Chen, Y. Zheng, S. Qu, H. Wang, F. Yi, Disease burden and long-term trends of urinary tract infections: A worldwide report. Frontiers in Public Health, 10, (2022). https://doi.org/10.3389/fpubh.2022.888205
S.S. Ray, J. Bandyopadhyay, Nanotechnology-enabled biomedical engineering: Current trends, future scopes, and perspectives. Nanotechnology Reviews, 10(1), (2021) 728–743. https://doi.org/10.1515/ntrev-2021-0052
D. Singh, S.K. Verma, V. Singh, P. Shyam, Green Functional Nanomaterials: Synthesis and Application. In Modern Nanotechnology, (2023) 45–65. https://doi.org/10.1007/978-3-031-31104-8_3
S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters, 19(1), (2020) 355–374. https://doi.org/10.1007/s10311-020-01074-x
A.I. Osman, Y. Zhang, M. Farghali, A.K. Rashwan, A.S. Eltaweil, E.M.A. El-Monaem, I.M.A. Mohamed, M.M. Badr, I. Ihara, D.W. Rooney, P. Yap, Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters, 22(2), (2024) 841–887. https://doi.org/10.1007/s10311-023-01682-3
B. Koul, A.K. Poonia, D. Yadav, J. Jin, Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules, 11(6), (2021) 886. https://doi.org/10.3390/biom11060886
G. Grasso, D. Zane, R. Dragone, Microbial Nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10(1), (2019) 11. https://doi.org/10.3390/nano10010011
S.I. Tsekhmistrenko, V.S. Bityutskyy, O.S. Tsekhmistrenko, L.P. Horalskyi, N.O. Tymoshok, M.Y. Spivak, Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity, 28(1), (2020) 9–17. https://doi.org/10.15421/012002
B.S. Adeleke, O.M. Olowe, M.S. Ayilara, O.A. Fasusi, O.P. Omotayo, A.E. Fadiji, D.C. Onwudiwe, O.O. Babalola, Biosynthesis of nanoparticles using microorganisms: A focus on endophytic fungi. Heliyon, 10(21), (2024) e39636. https://doi.org/10.1016/j.heliyon.2024.e39636
E. Castro-Longoria, Production of Platinum Nanoparticles and Nanoaggregates Using Neurospora crassa. Journal of Microbiology and Biotechnology, 22(7), (2012) 1000–1004. https://doi.org/10.4014/jmb.1110.10085
A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, R. Ramani, V. Srinivas, M. Sastry, Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 14(7), (2003) 824–828. https://doi.org/10.1088/0957-4484/14/7/323
N. Durán, P. D. Marcato, O. L. Alves, G. I. De Souza & E. Esposito, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of nanobiotechnology, 3, (2005) 1-7. https://doi.org/10.1186/1477-3155-3-8
S. S. Shankar, A. Ahmad, R. Pasricha, M. I. Khan, R. Kumar & M. Sastry, Immobilization of biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films. Journal of colloid and interface science, 274(1), (2004) 69-75. https://doi.org/10.1016/j.jcis.2003.12.011
A. Elsayed, K. Hashish, A.D. Sherief, Production and characterization of silver nanoparticles synthesized BY nanoparticles synthesized by Fusarium oxysporum Fusarium oxysporum. Journal of Environmental Sciences, 44(4), (2015) 681-691.
P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters, 1(10), (2001) 515–519. https://doi.org/10.1021/nl0155274
S.K. Das, A.R. Das, A.K. Guha, Microbial synthesis of multishaped gold nanostructures. Small, 6(9), (2010) 1012–1021. https://doi.org/10.1002/smll.200902011
L. Jaidev, G. Narasimha, Fungal-mediated biosynthesis of silver nanoparticles, characterization, and antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 81(2), (2010) 430–433. https://doi.org/10.1016/j.colsurfb.2010.07.033
J. Musarrat, S. Dwivedi, B.R. Singh, A.A. Al-Khedhairy, A. Azam, A. Naqvi, Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technology, 101(22), (2010) 8772–8776. https://doi.org/10.1016/j.biortech.2010.06.065
S.K. Das, A.R. Das, A.K. Guha, Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir, 25(14), (2009) 8192–8199. https://doi.org/10.1021/la900585p
M. Rai, S. Bonde, P. Golinska, J. Trzcińska-Wencel, A. Gade, K.A. Abd-Elsalam, S. Shende, S. Gaikwad, A.P. Ingle, Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications. Journal of Fungi, 7(2), (2021) 139. https://doi.org/10.3390/jof7020139
B. Fadeel, A.E. Garcia-Bennett, Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 62(3), (2009) 362–374. https://doi.org/10.1016/j.addr.2009.11.008
F. Tian, A. Prina-Mello, G. Estrada, A. Beyerle, W. Möller, H. Schulz, W. Kreyling, T. Stoeger, A novel assay for the quantification of internalized nanoparticles in macrophages. Nanotoxicology, 2(4), (2008) 232–242. https://doi.org/10.1080/17435390802504229
D. Cui, F. Tian, S.R. Coyer, J. Wang, B. Pan, F. Gao, R. He, Y. Zhang, Effects of Antisense-MyC-Conjugated single-walled carbon nanotubes on HL-60 cells. Journal of Nanoscience and Nanotechnology, 7(4), (2007) 1639–1646. https://doi.org/10.1166/jnn.2007.348
K. Rajesh, S. Pitchiah, K. Kannan, V. Suresh, Biosynthesis of silver nanoparticles from marine actinobacterium Micromonospora sp. and their bioactive potential. Cureus, (2024). https://doi.org/10.7759/cureus.53870
P. Pimprikar, S. Joshi, A. Kumar, S. Zinjarde, S. Kulkarni, Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids and Surfaces B: Biointerfaces, 74(1), (2009) 309–316. https://doi.org/10.1016/j.colsurfb.2009.07.040
A. Roychoudhury, Yeast-mediated green synthesis of nanoparticles for biological applications. Indian Journal of Pharmaceutical and Biological Research, 8(03), (2020) 26–31. https://doi.org/10.30750/ijpbr.8.3.4
A.K. Jha, K. Prasad, Yeast mediated synthesis of silver nanoparticles. International Journal of Nanoscience and Nanotechnology, 4(1), (2008) 17-22.
M. Gericke, A. Pinches, Microbial production of gold nanoparticles. Gold Bulletin, 39(1), (2006) 22–28. https://doi.org/10.1007/bf03215529
D.M. Cruz, G. Mi, T.J. Webster, Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A, 106(5), (2018) 1400–1412. https://doi.org/10.1002/jbm.a.36347
M. Shu, F. He, Z. Li, X. Zhu, Y. Ma, Z. Zhou, Z. Yang, F. Gao, M. Zeng, Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Research Letters, 15(1), (2020). https://doi.org/10.1186/s11671-019-3244-z
S. Faramarzi, Y. Anzabi, H. Jafarizadeh-Malmiri, Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Archives of Microbiology, 202(5), (2020) 1203–1209. https://doi.org/10.1007/s00203-020-01831-0
N. Thajuddin, G. Subramanian, Survey of cyanobacterial flora of the southern East Coast of India. Botanica Marina, 35(4), (1992). https://doi.org/10.1515/botm.1992.35.4.305
F.L. Oscar, D. Bakkiyaraj, C. Nithya, N. Thajuddin, Deciphering the diversity of microalgal bloom in wastewater-an attempt to construct potential consortia for bioremediation. Journal of Pure and Applied Microbiology, 2278, (2014) 92.
A. Sharma, S. Sharma, K. Sharma, S.P.K. Chetri, A. Vashishtha, P. Singh, R. Kumar, B. Rathi, V. Agrawal, Algae as crucial organisms in advancing nanotechnology: A systematic review. Journal of Applied Phycology, 28(3), (2015) 1759–1774. https://doi.org/10.1007/s10811-015-0715-1
N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan, M. Maqbool, Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, (2021) 102597. https://doi.org/10.1016/j.cis.2021.102597
A. Aryee, P. Rockenschaub, J. Robson, Z. Ahmed, C.N. Fhogartaigh, D. Ball, A. Hayward, L. Shallcross, Assessing the impact of discordant antibiotic treatment on adverse outcomes in community-onset UTI: A retrospective cohort study. Journal of Antimicrobial Chemotherapy, 79(1), (2023) 134–142. https://doi.org/10.1093/jac/dkad357
A.L. Flores-Mireles, J.N. Walker, M. Caparon, S.J. Hultgren, Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), (2015) 269–284. https://doi.org/10.1038/nrmicro3432
A. Sekar, T. Kaur, J.V. Nally, H. Rincon-Choles, S. Jolly, G.N. Nakhoul, Phosphorus binders: The new and the old, and how to choose. Cleveland Clinic Journal of Medicine, 85(8), (2018) 629–638. https://doi.org/10.3949/ccjm.85a.17054
MacLean, Urinary tract infection in pregnancy. International Journal of Antimicrobial Agents, 17(4), (2001) 273–277. https://doi.org/10.1016/s0924-8579(00)00354-x
R.J. Girishbabu, R. Srikrishna, S.T. Ramesh, Asymptomatic bacteriuria in pregnancy. International Journal of Biological & Medical Research, 2(3), (2011) 740–742.
M. Azami, Z. Jaafari, M. Masoumi, M. Shohani, G. Badfar, L. Mahmudi, S. Abbasalizadeh, The etiology and prevalence of urinary tract infection and asymptomatic bacteriuria in pregnant women in Iran: A systematic review and meta-analysis. BMC Urology, 19(1), (2019). https://doi.org/10.1186/s12894-019-0454-8
M. Totsika, D.G. Moriel, A. Idris, B.A. Rogers, D.J. Wurpel, M. Phan, D.L. Paterson, M.A. Schembri, Uropathogenic Escherichia coli mediated urinary tract infection. Current Drug Targets, 13(11), (2012) 1386–1399. https://doi.org/10.2174/138945012803530206
F.M. Smaill, J.C. Vazquez, Antibiotics for asymptomatic bacteriuria in pregnancy. Cochrane Library, 2019(11), (2019). https://doi.org/10.1002/14651858.cd000490.pub4
L. Ajah, F. Onu, P. Ezeonu, O. Umeora, P. Ibekwe, M. Ajah, Profile and microbiological isolates of asymptomatic bacteriuria among pregnant women in Abakaliki, Nigeria. Infection and Drug Resistance, 231, (2015). https://doi.org/10.2147/idr.s87052
S. Tadesse, T. Kahsay, G. Adhanom, G. Kahsu, H. Legese, A. G/Wahid, A. Derbie, Prevalence, antimicrobial susceptibility profile and predictors of asymptomatic bacteriuria among pregnant women in Adigrat General Hospital, Northern Ethiopia. BMC Research Notes, 11(1), (2018). https://doi.org/10.1186/s13104-018-3844-1
F. Ahmed, F. Eriso, Prevalence and associated factors of urinary tract infections among pregnant mothers at antenatal medical hospital, Borena Zone, Southern Ethiopia. Merit Research Journal of Medicine and Medical Sciences, 4(1), (2016) 68-75.
L.E. Nicolle, Asymptomatic bacteriuria and bacterial interference. In ASM Press eBooks, (2016) 87–120. https://doi.org/10.1128/9781555817404.ch6
A. Mabbett, G. Ulett, R. Watts, J. Tree, M. Totsika, C. Ong, J. Wood, W. Monaghan, D. Looke, G. Nimmo, Virulence properties of asymptomatic bacteriuria Escherichia coli. International Journal of Medical Microbiology, 299(1), (2008) 53–63. https://doi.org/10.1016/j.ijmm.2008.06.003
A.L. Flores-Mireles, J.N. Walker, M. Caparon, S.J. Hultgren, Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), (2015) 269–284. https://doi.org/10.1038/nrmicro3432
T.M. Hooton, W.E. Stamm, Diagnosis and treatment of uncomplicated urinary tract infection. Infectious Disease Clinics of North America, 11(3), (1997) 551–581. https://doi.org/10.1016/s0891-5520(05)70373-1
G. Wallmark, I. Arremark, B. Telander, Staphylococcus saprophyticus: A frequent cause of acute urinary tract infection among female outpatients. The Journal of Infectious Diseases, 138(6), (1978) 791–797. https://doi.org/10.1093/infdis/138.6.791
M.E. Rupp, D.E. Soper, G.L. Archer, Colonization of the female genital tract with Staphylococcus saprophyticus. Journal of Clinical Microbiology, 30(11), (1992) 2975–2979. https://doi.org/10.1128/jcm.30.11.2975-2979.1992
R. Colodner, S. Ken-Dror, B. Kavenshtock, B. Chazan, R. Raz, Epidemiology and clinical characteristics of patients with Staphylococcus saprophyticus bacteriuria in Israel. Infection, 34(5), (2006) 278–281. https://doi.org/10.1007/s15010-006-5655-x
C.C. Carson, V.D. McGraw, P. Zwadyk, Bacterial prostatitis caused by Staphylococcus saprophyticus. Urology, 19(6), (1982) 576–578. https://doi.org/10.1016/0090-4295(82)90002-4
E.M. Niccodem, A. Mwingwa, A. Shangali, J. Manyahi, F. Msafiri, M. Matee, M. Majigo, A. Joachim, Predominance of multidrug-resistant bacteria causing urinary tract infections among men with prostate enlargement attending a tertiary hospital in Dar es Salaam, Tanzania. Bulletin of the National Research Centre, 47(1), (2023). https://doi.org/10.1186/s42269-023-01030-z
R.H. Latham, K. Running, W.E. Stamm, Urinary tract infections in young adult women caused by Staphylococcus saprophyticus. JAMA, 250(22), (1983) 3063–3066.
Y. Gebretensaie, A. Atnafu, S. Girma, Y. Alemu, K. Desta, Prevalence of bacterial urinary tract infection, associated risk factors, and antimicrobial resistance pattern in Addis Ababa, Ethiopia: A cross-sectional study. Infection and Drug Resistance, 16, (2023) 3041–3050. https://doi.org/10.2147/idr.s402279
I.G. Baraboutis, E.P. Tsagalou, J.L. Lepinski, I. Papakonstantinou, V. Papastamopoulos, A.T. Skoutelis, S. Johnson, Primary Staphylococcus aureus urinary tract infection: The role of undetected hematogenous seeding of the urinary tract. European Journal of Clinical Microbiology & Infectious Diseases, 29(9), (2010) 1095–1101. https://doi.org/10.1007/s10096-010-0967-2
N.M. Gilbert, V.P. O’Brien, S. Hultgren, G. Macones, W.G. Lewis, A.L. Lewis, Urinary tract infection as a preventable cause of pregnancy complications: Opportunities, challenges, and a global call to action. Global Advances in Health and Medicine, 2(5), (2013) 59–69. https://doi.org/10.7453/gahmj.2013.061
M. Otto, Molecular basis of Staphylococcus epidermidis infections. Seminars in Immunopathology, 34(2), (2011) 201–214. https://doi.org/10.1007/s00281-011-0296-2
L.M. Weiner, A.K. Webb, B. Limbago, M.A. Dudeck, J. Patel, A.J. Kallen, J.R. Edwards, D.M. Sievert, Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infection Control and Hospital Epidemiology, 37(11), (2016) 1288–1301. https://doi.org/10.1017/ice.2016.174
M.J. Richards, J.R. Edwards, D.H. Culver, R.P. Gaynes, Nosocomial infections in medical intensive care units in the United States. Critical Care Medicine, 27(5), (1999) 887–892. https://doi.org/10.1097/00003246-199905000-00020
E.J. Boyko, S.D. Fihn, D. Scholes, L. Abraham, B. Monsey, Risk of urinary tract infection and asymptomatic bacteriuria among diabetic and nondiabetic postmenopausal women. American Journal of Epidemiology, 161(6), (2005) 557–564. https://doi.org/10.1093/oxfordjournals.aje.a000181
M.S. Alam, M.J. Anwar, M.S. Akhtar, P. Alam, A.A.S. Mohammad, A.F. Almutairy, A.S. Nazmi, T.K. Mukherjee, A systematic review of recent advances in urinary tract infection interventions and treatment technology. European Review for Medical and Pharmacological Sciences, 28(17), (2024) 4238–4254. https://doi.org/10.26355/eurrev_202409_36713
C.M. Brede, D.A. Shoskes, The etiology and management of acute prostatitis. Nature Reviews Urology, 8(4), (2011) 207–212. https://doi.org/10.1038/nrurol.2011.22
F. Millán-Rodríguez, J. Palou, A. Bujons-Tur, M. Musquera-Felip, C. Sevilla-Cecilia, M. Serrallach-Orejas, C. Baez-Angles, H. Villavicencio-Mavrich, Acute bacterial prostatitis: Two different sub-categories according to a previous manipulation of the lower urinary tract. World Journal of Urology, 24(1), (2005) 45–50. https://doi.org/10.1007/s00345-005-0040-4
B.M. Sharon, A.P. Arute, A. Nguyen, S. Tiwari, S.S.R. Bonthu, N.V. Hulyalkar, M.L. Neugent, D.P. Araya, N.A. Dillon, P.E. Zimmern, K.L. Palmer, N.J. De Nisco, Genetic and functional enrichments associated with Enterococcus faecalis isolated from the urinary tract. mBio, 14(6), (2023). https://doi.org/10.1128/mbio.02515-23
J.J. Wyndaele, (2023) Pathology-Pathophysiology: Ultrastructure of the neurogenic bladder. Handbook of Neurourology. Springer, Singapore, https://doi.org/10.1007/978-981-99-1659-7_9
P.A. Tambyah, D.G. Maki, The relationship between pyuria and infection in patients with indwelling urinary catheters. Archives of Internal Medicine, 160(5), (2000). https://doi.org/10.1001/archinte.160.5.673
M.J. González, L. Robino, P. Zunino, P. Scavone, Urinary tract infection: Is it time for a new approach considering a gender perspective and new microbial advances? Frontiers in Urology, 4, (2024). https://doi.org/10.3389/fruro.2024.1487858
K.B. Ulett, W.H. Benjamin, F. Zhuo, M. Xiao, F. Kong, G.L. Gilbert, M.A. Schembri, G.C. Ulett, Diversity of group B streptococcus serotypes causing urinary tract infection in adults. Journal of Clinical Microbiology, 47(7), (2009) 2055–2060. https://doi.org/10.1128/jcm.00154-09
C.C. Marc, M. Susan, S.A. Sprintar, M. Licker, D.A. Oatis, D.T. Marti, S.R. Susan, L.C. Nicolescu, A.G. Mihu, T.R. Olariu, D. Muntean, Prevalence and antibiotic resistance of Streptococcus agalactiae in women of childbearing age presenting urinary tract infections from Western Romania. Life, 14(11), (2024) 1476. https://doi.org/10.3390/life14111476
A.A. Adeniyi, B.F. Adenike, P.O. Olamiju, I.O. Toluwalope, A.F. Titilope, A.F. Haruna, O.A. Adeniyi, Urinary tract infection and antibiotic-resistant patterns of isolated bacteria in geriatric patients. Clinical Medicine and Health Research Journal, 4(2), (2024) 801–805. https://doi.org/10.18535/cmhrj.v4i2.320
A.M. Mohamed, M.A. Khan, A. Faiz, J. Ahmad, E.B. Khidir, M.A. Basalamah, A. Aslam, Group B streptococcus colonization, antibiotic susceptibility, and serotype distribution among Saudi pregnant women. Infection and Chemotherapy, 52(1), (2020) 70. https://doi.org/10.3947/ic.2020.52.1.70
M.S. Hammoud, M. Al-Shemmari, L. Thalib, N. Al-Sweih, N. Rashwan, L.V. Devarajan, H. Elsori, Comparison between different types of surveillance samples for the detection of GBS colonization in both parturient mothers and their infants. Gynecologic and Obstetric Investigation, 56(4), (2003) 225–230. https://doi.org/10.1159/000074825
K.P. High, M.S. Edwards, C.J. Baker, Group B streptococcal infections in elderly adults. Clinical Infectious Diseases, 41(6), (2005) 839–847. https://doi.org/10.1086/432804
R.M. Karigoudar, M.H. Karigoudar, S.M. Wavare, S.S. Mangalgi, Detection of biofilm among uropathogenic Escherichia coli and its correlation with antibiotic resistance pattern. Journal of Laboratory Physicians, 11(1), (2019) 17–22. https://doi.org/10.4103/jlp.jlp_98_18
J.A. Karlowsky, L.J. Kelly, C. Thornsberry, M.E. Jones, D.F. Sahm, Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrobial Agents and Chemotherapy, 46(8), (2002) 2540–2545. https://doi.org/10.1128/aac.46.8.2540-2545.2002
U. Priyadharshana, L.B. Piyasiri, C. Wijesinghe, Prevalence, antibiotic sensitivity pattern and genetic analysis of extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella spp among patients with community-acquired urinary tract infection in Galle district, Sri Lanka. Ceylon Medical Journal, 64(4), (2019) 140. https://doi.org/10.4038/cmj.v64i4.8990
M.Q. Alanazi, F.Y. Alqahtani, F.S. Aleanizy, An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: Retrospective study. Annals of Clinical Microbiology and Antimicrobials, 17(1), (2018). https://doi.org/10.1186/s12941-018-0255-z
R.H. Marco, E.G. Olmos, J.R. Bretón-Martínez, L.G. Pérez, B.C. Sánchez, J. Fujkova, M.S. Campos, J.M.N. Coito, Infección urinaria febril adquirida en la comunidad por bacterias productoras de betalactamasas de espectro extendido en niños hospitalizados. Enfermedades Infecciosas y Microbiología Clínica, 35(5), (2016) 287–292. https://doi.org/10.1016/j.eimc.2016.01.012
F. Madhi, C. Jung, S. Timsit, C. Levy, S. Biscardi, M. Lorrot, E. Grimprel, L. Hees, I. Craiu, A. Galerne, F. Dubos, E. Cixous, V. Hentgen, S. Béchet, S. Bonacorsi, R. Cohen, Febrile urinary tract infection due to extended-spectrum beta-lactamase–producing Enterobacteriaceae in children: A French prospective multicenter study. PLoS ONE, 13(1), (2018) e0190910. https://doi.org/10.1371/journal.pone.0190910
W.R. Jarvis, W.J. Martone, Predominant pathogens in hospital infections. Journal of Antimicrobial Chemotherapy, 29(Suppl A), (1992) 19–24. https://doi.org/10.1093/jac/29.suppl_a.19
P. Visca, F. Chiarini, A. Mansi, C. Vetriani, L. Serino, N. Orsi, Virulence determinants in Pseudomonas aeruginosa strains from urinary tract infections. Epidemiology and Infection, 108(2), (1992) 323–336. https://doi.org/10.1017/s0950268800049797
M. Klausen, A. Aaes-Jørgensen, S. Molin, T. Tolker-Nielsen, Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Microbiology, 50(1), (2003) 61–68. https://doi.org/10.1046/j.1365-2958.2003.03677.x
N. Høiby, H.K. Johansen, C. Moser, Z. Song, O. Ciofu, A. Kharazmi, and the in vitro and in vivo biofilm mode of growth. Microbes and Infection, 3(1), (2001) 23–35. https://doi.org/10.1016/s1286-4579(00)01349-6
E. Drenkard, Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes and Infection, 5(13), (2003) 1213–1219. https://doi.org/10.1016/j.micinf.2003.08.009
B.R. Boles, M. Thoendel, P.K. Singh, Self-generated diversity produces “insurance effects” in biofilm communities. Proceedings of the National Academy of Sciences, 101(47), (2004) 16630–16635. https://doi.org/10.1073/pnas.0407460101
S.M. Jacobsen, D.J. Stickler, H.L.T. Mobley, M.E. Shirtliff, Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical Microbiology Reviews, 21(1), (2008) 26–59. https://doi.org/10.1128/cmr.00019-07
H.L.T. Mobley, J.W. Warren, Urease-positive bacteriuria and obstruction of long-term urinary catheters. Journal of Clinical Microbiology, 25(11), (1987) 2216–2217. https://doi.org/10.1128/jcm.25.11.2216-2217.1987
C.E. Armbruster, K. Prenovost, H.L.T. Mobley, L. Mody, How often do clinically diagnosed catheter-associated urinary tract infections in nursing homes meet standardized criteria? Journal of the American Geriatrics Society, 65(2), (2016) 395–401. https://doi.org/10.1111/jgs.14533
J. Prywer, M. Olszynski, Bacterially induced formation of infectious urinary stones: Recent developments and future challenges. Current Medicinal Chemistry, 24(3), (2017) 292–311. https://doi.org/10.2174/0929867323666161028154545
C.E. Armbruster, S.N. Smith, A.O. Johnson, V. DeOrnellas, K.A. Eaton, A. Yep, L. Mody, W. Wu, H.L.T. Mobley, The pathogenic potential of Proteus mirabilis is enhanced by other uropathogens during polymicrobial urinary tract infection. Infection and Immunity, 85(2), (2016). https://doi.org/10.1128/iai.00808-16
C.M. Kunin, Blockage of urinary catheters: Role of microorganisms and constituents of the urine on formation of encrustations. Journal of Clinical Epidemiology, 42(9), (1989) 835–842. https://doi.org/10.1016/0895-4356(89)90096-6
N. Sabbuba, D. Stickler, E. Mahenthiralingam, D. Painter, J. Parkin, R. Feneley, Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical. The Journal of Urology, 171(5), (2004) 1925–1928. https://doi.org/10.1097/01.ju.0000123062.26461.f9
C.B. Sekharan, K.R. Kumari, E.E. Kuwingwa, D.D. Kumar, Evaluation of the prevalence of urinary tract infection in females aged 6–50 years at Kinondoni District, Tanzania. Science International, 5(2), (2017) 42–46. https://doi.org/10.17311/sciintl.2017.42.46
B.P. Msaki, S.E. Mshana, A. Hokororo, H.D. Mazigo, D. Morona, Prevalence and predictors of urinary tract infection and severe malaria among febrile children attending Makongoro Health Centre in Mwanza City, North-Western Tanzania. Archives of Public Health, 70(1), (2012). https://doi.org/10.1186/0778-7367-70-4
B. Foxman, The epidemiology of urinary tract infection. Nature Reviews Urology, 7(12), (2010) 653–660. https://doi.org/10.1038/nrurol.2010.190
Y.A. Almutawif, H.M.A. Eid, Prevalence and antimicrobial susceptibility pattern of bacterial uropathogens among adult patients in Madinah, Saudi Arabia. BMC Infectious Diseases, 23(1), (2023). https://doi.org/10.1186/s12879-023-08578-1
S. Lamsal, S. Adhikari, B.R. Raghubanshi, S. Sapkota, K.R. Rijal, P. Ghimire, M.R. Banjara, Antifungal susceptibility and biofilm formation of Candida albicans isolated from different clinical specimens. Tribhuvan University Journal of Microbiology, (2021) 53–62. https://doi.org/10.3126/tujm.v8i1.41195
T. Addis, Y. Mekonnen, Z. Ayenew, S. Fentaw, H. Biazin, Bacterial uropathogens and burden of antimicrobial resistance pattern in urine specimens referred to Ethiopian Public Health Institute. PLoS ONE, 16(11), (2021) e0259602. https://doi.org/10.1371/journal.pone.0259602
L.G. Giesen, G. Cousins, B.D. Dimitrov, F.A. Van De Laar, T. Fahey, Predicting acute uncomplicated urinary tract infection in women: A systematic review of the diagnostic accuracy of symptoms and signs. BMC Family Practice, 11(1), (2010). https://doi.org/10.1186/1471-2296-11-78
Z. Arinzon, S. Shabat, A. Peisakh, Y. Berner, Clinical presentation of urinary tract infection (UTI) differs with aging in women. Archives of Gerontology and Geriatrics, 55(1), (2011) 145–147. https://doi.org/10.1016/j.archger.2011.07.012
A.P. Glaser, A.J. Schaeffer, Urinary tract infection and bacteriuria in pregnancy. Urologic Clinics of North America, 42(4), (2015) 547–560. https://doi.org/10.1016/j.ucl.2015.05.004
Adrie, M. Garrouste-Orgeas, W.I. Essaied, C. Schwebel, M. Darmon, B. Mourvillier, S. Ruckly, A. Dumenil, H. Kallel, L. Argaud, G. Marcotte, F. Barbier, V. Laurent, D. Goldgran-Toledano, C. Clec’h, E. Azoulay, B. Souweine, J. Timsit, Attributable mortality of ICU-acquired bloodstream infections: Impact of the source, causative microorganism, resistance profile, and antimicrobial therapy. Journal of Infection, 74(2), (2016) 131–141. https://doi.org/10.1016/j.jinf.2016.11.001
A. Kumar, D. Roberts, K.E. Wood, B. Light, J.E. Parrillo, S. Sharma, R. Suppes, D. Feinstein, S. Zanotti, L. Taiberg, D. Gurka, A. Kumar, M. Cheang, Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Medicine, 34(6), (2006) 1589–1596. https://doi.org/10.1097/01.ccm.0000217961.75225.e9
A.H. Holmes, L.S.P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, P.J. Guerin, L.J.V. Piddock, Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), (2015) 176–187. https://doi.org/10.1016/s0140-6736(15)00473-0
M. Levitus, A. Rewane, T.B. Perera, (2023) Vancomycin-resistant enterococci. StatPearls – NCBI Bookshelf, https://www.ncbi.nlm.nih.gov/sites/books/NBK513233/
M.S. Said, E. Tirthani, E. Lesho, (2024) Enterococcus infections. StatPearls – NCBI Bookshelf, https://www.ncbi.nlm.nih.gov/books/NBK567759/
A.Bastopcu, H. Yazgi, M.H. Uyanik, A. Ayyildiz, (2008) Evaluation of quinolone resistance in gram-negative bacilli isolated from community- and hospital-acquired infections. PMC,. https://pmc.ncbi.nlm.nih.gov/articles/PMC4261680/
A.H. Siddiqui, J. Koirala, (2023) Methicillin-resistant Staphylococcus aureus. StatPearls – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK482221/
S. Baumann, C.P. Lutz, D.M. Eigler, Nano on reflection. Nature Nanotechnology, 11, (2016) 828–834. https://doi.org/10.1038/nnano.2016.232
A.Karnwal, G. Kumar, G. Pant, K. Hossain, A. Ahmad, M.B. Alshammari, Perspectives on usage of functional nanomaterials in antimicrobial therapy for antibiotic-resistant bacterial infections. ACS Omega, 8(15), (2023) 13492–13508. https://doi.org/10.1021/acsomega.3c00110
J.F.A. de Oliveira, Â. Saito, A.T. Bido, et al., Defeating bacterial resistance and preventing mammalian cell toxicity through rational design of antibiotic-functionalized nanoparticles. Scientific Reports, 7, (2017) 1326. https://doi.org/10.1038/s41598-017-01209-1
A. Vassallo, M.F. Silletti, I. Faraone, L. Milella, Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. Journal of Nanomaterials, 2020, (2020) 1–31. https://doi.org/10.1155/2020/6905631
Elhassan, N. Devnarain, M. Mohammed, T. Govender, C.A. Omolo, Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. Journal of Controlled Release, 351, (2022) 598–622. https://doi.org/10.1016/j.jconrel.2022.09.052
T.S. Veriato, I. Fontoura, L.D. Oliveira, et al., Nano-antibiotic based on silver nanoparticles functionalized to the vancomycin–cysteamine complex for treating Staphylococcus aureus and Enterococcus faecalis. Pharmacological Reports, 75, (2023) 951–961. https://doi.org/10.1007/s43440-023-00491-3
Wang, H. Zhou, O.P. Olademehin, S.J. Kim, P. Tao, Insights into key interactions between vancomycin and bacterial cell wall structures. ACS Omega, 3(1), (2018) 37–45. https://doi.org/10.1021/acsomega.7b01483
C.R. Mendes, G. Dilarri, C.F. Forsan, V. de Moraes Ruy Sapata, P.R.M. Lopes, P.B. de Moraes, R.N. Montagnolli, H. Ferreira, E.D. Bidoia, Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12, (2022) 2658. https://doi.org/10.1038/s41598-022-06657-y
M. Alavi, R. Kowalski, R. Capasso, D.M.C. Henrique, R.A. De Menezes Irwin, Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells. MNBA Journal, (2022). https://doi.org/10.22034/mnba.2022.152629
J. He, Y. Qiao, H. Zhang, et al., Gold–silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomaterials, 234, (2020) 119763. https://doi.org/10.1016/j.biomaterials.2020.119763
Pasparakis, Recent developments in the use of gold and silver nanoparticles in biomedicine. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 14(5), (2022). https://doi.org/10.1002/wnan.1817
T.A. Hagbani, H. Yadav, A. Moin, A.S.A. Lila, K. Mehmood, F. Alshammari, S. Khan, E.S. Khafagy, T. Hussain, S.M.D.Rizvi, M.H. Abdallah, Enhancement of vancomycin potential against pathogenic bacterial strains via gold nano-formulations: A nano-antibiotic approach. Materials, 15(3), (2022) 1108. https://doi.org/10.3390/ma15031108
P. Laganà, G. Visalli, A. Facciolà, M.P. Ciarello, A. Laganà, D. Iannazzo, A. Di Pietro, Is the antibacterial activity of multi-walled carbon nanotubes (MWCNTs) related to antibiotic resistance? An assessment in clinical isolates. International Journal of Environmental Research and Public Health, 18(17), (2021) 9310. https://doi.org/10.3390/ijerph18179310
Muthusankar, R.K. Devi, G. Gopu, Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: An efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosensors and Bioelectronics, 150, (2019) 111947. https://doi.org/10.1016/j.bios.2019.111947
S. Ambreen, A. Sajid, O. Naseer, A. Ikram, M. Imran, Antimicrobial and antibiofilm potential of PEGylated Chitosan-Based Nano-Antibiotics against Multidrug-Resistant E coli strains. Microbiological & Immunological Communications, 2(2), (2023) 69–87. https://doi.org/10.55627/mic.002.02.0402
V.A. Spirescu, C. Chircov, A.M. Grumezescu, E. Andronescu, Polymeric Nanoparticles for Antimicrobial Therapies: An up-to-date Overview. Polymers, 13(5), (2021) 724. https://doi.org/10.3390/polym13050724
J.J. Aguilera-Correa, J. Esteban, M. Vallet-Regí, Inorganic and polymeric nanoparticles for human viral and bacterial infections prevention and treatment. Nanomaterials, 11(1), (2021) 137. https://doi.org/10.3390/nano11010137
M.M. Mamun, A.J. Sorinolu, M. Munir, E.P. Vejerano, Nanoantibiotics: Functions and properties at the nanoscale to combat antibiotic resistance. Frontiers in Chemistry, 9 (2021). https://doi.org/10.3389/fchem.2021.687660
V. Jayachandran, Nano Antibiotics: prospects and challenges. Nanoparticles in Healthcare: Applications in Therapy, Diagnosis, and Drug Delivery, 160, (2024) 83-112.
R. Subbiah, M. Veerapandian, K.S. Yun, Nanoparticles: Functionalization and multifunctional applications in biomedical sciences. Current Medicinal Chemistry, 17(36), (2010) 4559–4577. https://doi.org/10.2174/092986710794183024
Otsuka, Y. Nagasaki, K. Kataoka, PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 55(3), (2003) 403–419. https://doi.org/10.1016/s0169-409x(02)00226-0
K. Upadhyay, R.K. Tamrakar, S. Thomas, M. Kumar, Surface functionalized nanoparticles: A boon to biomedical science. Chemico-Biological Interactions, 380, (2023) 110537. https://doi.org/10.1016/j.cbi.2023.110537
A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine Nanotechnology Biology and Medicine, 3(2), (2007) 168–171. https://doi.org/10.1016/j.nano.2007.02.001
S.Z.H. Naqvi, U. Kiran, M.I. Ali, A. Jamal, A. Hameed, S. Ahmed, N. Ali, Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria, International Journal of Nanomedicine, 8, (2013) 3187–3195. https://doi.org/10.2147/IJN.S49284
S. Ali, S. Perveen, M.R. Shah, M. Zareef, M. Arslan, S. Basheer, S. Ullah, M. Ali, Bactericidal potentials of silver and gold nanoparticles stabilized with cefixime: a strategy against antibiotic-resistant bacteria. Journal of Nanoparticle Research, 22(7), (2020). https://doi.org/10.1007/s11051-020-04939-y
A. Kaur, R. Kumar, Formulation of biocompatible Vancomycin Conjugated Gold nanoparticles for enhanced antibacterial efficacy. ES Energy & Environments, (2021). https://doi.org/10.30919/esee8c547
Nawaz, S.M. Ali, N.F. Rana, T. Tanweer, A. Batool, T.J. Webster, F. Menaa, S. Riaz, Z. Rehman, F. Batool, M. Fatima, T. Maryam, I. Shafique, A. Saleem, A. Iqbal, Ciprofloxacin-Loaded Gold Nanoparticles against Antimicrobial Resistance: An In Vivo Assessment. Nanomaterials, 11(11), (2021) 3152. https://doi.org/10.3390/nano11113152
F.M. Abdulsada, N.N. Hussein, G.M. Sulaiman, A.A. Ali, M. Alhujaily, Evaluation of the Antibacterial Properties of Iron Oxide, Polyethylene Glycol, and Gentamicin Conjugated Nanoparticles against Some Multidrug-Resistant Bacteria. Journal of Functional Biomaterials, 13(3), (2022) 138. https://doi.org/10.3390/jfb13030138
F. Saleem, N. Safdar, I. Fatima, A. Yasmin, W. Hussain, Functionalization of ampicillin and gentamicin with biogenic copper nanoparticles (CuNPs) remodel antimicrobial and cytotoxic outcome against MDR clinical isolates. Archives of Microbiology, 205(3), (2023) 88.https://doi.org/10.1007/s00203-023-03425-y
Kotrange, A. Najda, A. Bains, R. Gruszecki, P. Chawla, M.M. Tosif, Metal and metal oxide nanoparticle as a novel antibiotic carrier for the direct delivery of antibiotics. International Journal of Molecular Sciences, 22(17) (2021) 9596. https://doi.org/10.3390/ijms22179596
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jamuna G, Vickram A.S (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.