Synthesis and Electrochemical Characterization of TiO2/g-C3N5 Coated 316L Stainless Steel for Orthopedic Applications

Authors

  • Padma Santhiya Muthu Krishnan Laboratory of Electrochemical Interfaces, Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India. Author
  • Manoja Tharmaraj Laboratory of Electrochemical Interfaces, Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India. Author
  • Abinaya Radhakrishnan Laboratory of Electrochemical Interfaces, Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India. Author
  • Anuradha Ramani Department of Chemistry, Annai Hajira Women’s College, Tirunelveli, Tamil Nadu, India. Author
  • Nagarajan Srinivasan Laboratory of Electrochemical Interfaces, Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India. Author

DOI:

https://doi.org/10.54392/irjmt25115

Keywords:

Biomaterials, Corrosion, Graphitic carbon nitrite (g-C3N5), Titanium dioxide, Stimulated body fluid

Abstract

This study investigates the effect of varying amounts of nitrogen-rich carbon nitride (g-C₃N5) incorporated into titanium dioxide (TiO₂) coatings on 316L stainless steel (316LSS). The TiO₂/g-C₃N₅ coatings were tested in simulated body fluid (SBF) to assess their performance for orthopedic applications. TiO₂ was prepared using the sol-gel method, while g-C₃N₅ was synthesized through thermal polymerisation. The crystal structure, purity, and chemical composition of the TiO₂/g-C₃N₅ (TiCN) composites were confirmed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and Raman analysis. The surface morphology of the coated samples was characterised using Scanning Electron Microscopy (SEM). In contrast, surface roughness was measured with Atomic Force Microscopy (AFM), revealing a porous film with an average particle size of 25 to 100 nm was coated over 316LSS. A fourfold increase in corrosion resistance was evaluated through Open circuit potential (OCP), Potentiodynamic polarisation, and Electrochemical impedance spectroscopy (EIS). The in vitro test revealed the enhanced growth of a hydroxyapatite layer on the coated TiCN. The elemental composition of calcium and phosphate ions present in the hydroxyapatite (HAP) deposition was confirmed using Raman spectroscopy. The results suggest that the TiCN coated 316LSS was a promising material for biomedical applications.

References

M. Niinomi, (Recent metallic materials for biomedical applications. Metallurgical and materials transactions A, 33, (2002) 477-486. https://doi.org/10.1007/s11661-002-0109-2

Y. Zhu, W. Liu, T. Ngai, Polymer coatings on magnesium‐based implants for orthopedic applications. Journal of Polymer Science, 60(1), (2022) 32-51. https://doi.org/10.1002/pol.20210578

M.H. Nawaz, A. Aizaz, A.Q. Ropari, H. Shafique, O.B. Imran, B.Z. Minhas, J. Manzur, M.S. Alqahtani, M. Abbas, M.A. Ur Rehman, A study on the effect of bioactive glass and hydroxyapatite-loaded Xanthan dialdehyde-based composite coatings for potential orthopedic applications. Scientific Reports, 13(1), (2023) 17842. https://doi.org/10.1038/s41598-023-44870-5

M. Benčina, A. Iglič, M. Mozetič, I. Junkar, Crystallized TiO2 nanosurfaces in biomedical applications. Nanomaterials, 10(6), (2020) 1121. https://doi.org/10.3390/nano10061121

C.H.M. Beraldo, A. Spinelli, N. Scharnagl, T.F. da Conceição, Phosphorylated PVA coatings for corrosion protection of Mg AZ31 alloy. Journal of Coatings Technology and Research, 21(1), (2024) 243-253. https://doi.org/10.1007/s11998-023-00813-3

M. Poorraeisi, A. Afshar, The study of electrodeposition of hydroxyapatite-ZrO2-TiO2 nanocomposite coatings on 316 stainless steel. Surface and Coatings Technology, 339, (2018) 199-207. https://doi.org/10.1016/j.surfcoat.2018.02.030

M. Ramezani, Z.M. Ripin, An overview of enhancing the performance of medical implants with nanocomposites. Journal of Composites Science, 7(5), (2023) 199. https://doi.org/10.3390/jcs7050199

C.C. Wachesk, S.H. Seabra, T.A.T. Dos Santos, V.J. Trava-Airoldi, A.O. Lobo, F.R. Marciano, In vivo biocompatibility of diamond-like carbon films containing TiO2 nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine, 32(9), (2021)117. https://doi.org/10.1007/s10856-021-06596-6

S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, L. Tayebi, Biomedical applications of TiO2 nanostructures: recent advances. International journal of nanomedicine, (2020) 3447-3470. https://doi.org/10.2147/IJN.S249441

A.M. Bannunah, Biomedical applications of zirconia-based nanomaterials: challenges and future perspectives. Molecules, 28(14), (2023) 5428. https://doi.org/10.3390/molecules28145428

E. Fiorentis, M.A. Gatou, N.E. Lagopati, A. Pavlatou, Biomedical Applications of Silica (SiO2) Nanoparticles. Biomedical Journal of Scientific & Technical Research, 51(10, (2023) 42382-42389. http://dx.doi.org/10.26717/BJSTR.2023.51.008057

P.A. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, A. Akbarzadeh, S. Davaran, A.N. Nasibova, R. Khalilov, T. Kavetskyy, Biomedical Applications of Aluminium Oxide Nanoparticles. micro & Nano Letters, 13(9), (2018)1227-1231. https://doi.org/10.1049/mnl.2018.5070

A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surface science reports, 63(12), (2008) 515-582. https://doi.org/10.1016/j.surfrep.2008.10.001

M. Priyadarshini, U. Rama Chetan, U. Vijayalakshmi, Bioactive Coating as a Surface Modification Technique for Biocompatible Metallic Implants: A Review. Journal of Asian Ceramic Societies, 7(4), (2019) 397-406. https://doi.org/10.1080/21870764.2019.1669861

A.M. Kumar, N. Rajendran, Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants. Ceramics International, 39(5), (2013) 5639-5650. https://doi.org/10.1016/j.ceramint.2012.12.080

K.T. Oh, Y.S. Park, Plasma-sprayed coating of hydroxylapatite on super austenitic stainless steels. Surface and Coatings Technology, 110(1-2), (1998) 4-12. https://doi.org/10.1016/S0257-8972(98)00537-4

J. Dai, J. Yang, L. Zhuge, X. Wu, Al2O3–TiO2 composite coatings with enhanced anticorrosion properties for 316L stainless steel. Materials and Corrosion, 71(9), (2020) 1512-1520. https://doi.org/10.1002/maco.201911449

B. Garrido, V. Albaladejo-Fuentes, I.G. Cano, S. Dosta, Development of bioglass/PEEK composite coating by cold gas spray for orthopedic implants. Journal of Thermal Spray Technology, (2022)1-11. https://doi.org/10.1007/s11666-021-01312-w

O. Levana, J.H. Jeong, S.S. Hur, W. Seo, M. Lee, K.M. Noh, S. Hong, J.H. Park, J.H. Lee, C. Choi, Y. Hwang, Development of nanoclay-based nanocomposite surfaces with antibacterial properties for potential biomedical applications. Journal of Industrial and Engineering Chemistry, 120, (2023) 448-459. https://doi.org/10.1016/j.jiec.2022.12.052

Z. Aouzal, M. Bouabdallaoui, A. El Guerraf, S. Ben Jadi, M. Bazzaoui, R. Wang, E.A. Bazzaoui, Electrochemical, spectroscopic and microscopic investigation of PEDOT coated nickel plate from aqueous micellar solutions and its anti-corrosion performances. Journal of Coatings Technology and Research, 20(3), (2023) 1053-1068. https://doi.org/10.1007/s11998-022-00724-9

G. Liao, F. He, Q. Li, L. Zhong, R. Zhao, H. Chee, H. Gao, B. Fang, Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science, 112, (2020) 100666. https://doi.org/10.1016/j.pmatsci.2020.100666

D. Rane, S. Kerkar, S.R. Ramanan, M. Kowshik, Superwettable surfaces and factors impacting microbial adherence in microbiologically-influenced corrosion: a review. World Journal of Microbiology and Biotechnology, 40(3), (2024) 98. https://doi.org/10.1007/s11274-024-03886-3

G. Yang, T. Chen, B. Feng, J. Weng, K. Duan, J. Wang, X. Lu, Improved corrosion resistance and biocompatibility of biodegradable magnesium alloy by coating graphite carbon nitride (g-C3N4). Journal of Alloys and Compounds, 770, (2019) 823-830. https://doi.org/10.1016/j.jallcom.2018.08.180

Q. Fu, M. Feng, J. Li, N. He, W. Li, J. Li, J. Yang, W. Jin, W. Li, Z. Yu, Effects of hydroxyapatite coatings on enhanced corrosion protection and cytocompatibility of high-purity magnesium. Journal of Coatings Technology and Research, 19(6), (2022)1757-1771. https://doi.org/10.1007/s11998-022-00646-6

A. Khaskhoussi, L. Calabrese, M. Curro, R. Ientile, J. Bouaziz, E. Proverbio, Effect of the Compositions on the Biocompatibility of New Alumina–Zirconia–Titania Dental Ceramic Composites. Materials. 13 (2020) 1374. https://doi.org/10.3390/ma13061374

N. Hallemans, D. Howey, A. Battistel, N.F. Saniee, F. Scarpioni, B. Wouters, F. La Mantia, A. Hubin, W.D. Widanage, J. Lataire, Electrochemical Impedance Spectroscopy Beyond Linearity and Stationarity—A Critical Review. Electrochimica Acta, 466, (2023) 142939. https://doi.org/10.1016/j.electacta.2023.142939

P. Raymond, F. St-Germain, S. Paul, D. Chabot, L. Deschênes, Impact of Nanoparticle-Based TiO₂ Surfaces on Norovirus Capsids and Genome Integrity. Foods. 13, (2024) 1527. https://doi.org/10.3390/foods13101527

M.S. Nagare, A. Hakami, P.K. Biswas, E.K. Stefanakos, S.S. Srinivasan, A Review of Thermochromic Materials for Coating Applications: Production, Protection, and Degradation of Organic Thermochromic Materials. Journal of Coatings Technology and Research, 22, (2025) 91–115. https://doi.org/10.1007/s11998-024-00982-9

C. García-Cabezón, V. Godinho, C. Pérez-González, Y. Torres, F. Martín-Pedrosa, Electropolymerized polypyrrole silver nanocomposite coatings on porous Ti substrates with enhanced corrosion and antibacterial behavior for biomedical applications. Materials Today Chemistry, 29, (2023) 101433. https://doi.org/10.1016/j.mtchem.2023.101433

N.A. Johari, J. Alias, A. Zanurin, N.S. Mohamed, N.A. Alang, M.Z.M. Zain, Recent progress of self-healing coatings for magnesium alloys protection. Journal of Coatings Technology and Research, 19(3), (2022) 757-774. https://doi.org/10.1007/s11998-021-00599-2

L.Teo, V.R. Subramanian, D.T. Schwartz, Dynamic electrochemical impedance spectroscopy of lithium-ion batteries: Revealing underlying physics through efficient joint time-frequency modeling. Journal of the Electrochemical Society, 168(1), (2021) 010526. https://doi.org/10.1149/1945-7111/abda04

A. Sharma, S. Sharma, Graphene-based polymer coatings for preventing marine corrosion: A review. Journal of Coatings Technology and Research, 20(2), (2023) 413-432. https://doi.org/10.1007/s11998-022-00730-x

A. Rashidizadeh, H. Ghafuri, H.R. Esmaili Zand, N. Goodarzi, Graphitic carbon nitride nanosheets covalently functionalized with biocompatible vitamin B1: synthesis, characterization, and its superior performance for synthesis of quinoxalines. ACS omega, 4(7), (2019) 12544-12554. https://doi.org/10.1021/acsomega.9b01635

S. Nagarajan, N. Rajendran, Crevice corrosion behaviour of superaustenitic stainless steels: dynamic electrochemical impedance spectroscopy and atomic force microscopy studies. Corrosion Science, 51(2), (2009) 217-224. https://doi.org/10.1016/j.corsci.2008.11.008

S. Kang, Z. Fang, M. He, M. Chen, Y. Gao, D. Sun, Y. Liu, M. Chen, M. Dong, P. LiuCui, L. (2020). An instant, biocompatible and biodegradable high-performance graphitic carbon nitride. Journal of colloid and interface science, 563, 336-346. https://doi.org/10.1016/j.jcis.2019.12.021

J. Marchi, V. Ussui, C.S. Delfino, A.H. Bressiani, M.M. Marques, Analysis in vitro of the cytotoxicity of potential implant materials. I: Zirconia‐titania sintered ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94(2), (2010) 305-311. https://doi.org/10.1002/jbm.b.31652

Y. Zhang, T. Cui, J. Zhao, Y. Yan, J. Jiang, Fabrication and study of a novel TiO2/g-C3N5 material and photocatalytic properties using methylene blue and tetracycline under visible light. Inorganic Chemistry Communications, 143, (2022)109815. https://doi.org/10.1016/j.inoche.2022.109815

V. Patel, K. Ramadass, B. Morrison, J.S. John Britto, J.M. Lee, S. Mahasivam, P. Weerathunge, V. Bansal, J. Yi, G. Singh, A. Vinu, Utilising the Nanozymatic Activity of Copper‐Functionalised Mesoporous C3N5 for Sensing Biomolecules. Chemistry–A European Journal, 29(69), (2023) e202302723. https://doi.org/10.1002/chem.202302723

M. Subbiah, P. MuthuKrishnan, S. Venkatachalam, N. Srinivasan, A nanoporous mixed oxide coatings over 316L SS for orthopaedic implant applications. Journal of Bio-and Tribo-Corrosion, 7(3), (2021)113. https://doi.org/10.1007/s40735-021-00549-w

J.H. Lee, H.S. Ryu, J.H. Seo, D.Y. Lee, B.S. Chang, C.K. Lee, Negative effect of rapidly resorbing properties of bioactive glass-ceramics as bone graft substitute in a rabbit lumbar fusion model. Clinics in Orthopedic Surgery, 6(1), (2014) 87-95. https://doi.org/10.4055/cios.2014.6.1.87

B. Yilmaz, A.E. Pazarceviren, A. Tezcaner, Z. Evis, Historical development of simulated body fluids used in biomedical applications: A review. Microchemical Journal, 155, (2020) 104713. https://doi.org/10.1016/j.microc.2020.104713

Z.H.E.N. Zhen, T.F. Xi, Y.F. Zheng, A review on in vitro corrosion performance test of biodegradable metallic materials. Transactions of Nonferrous Metals Society of China, 23(8), (2013) 2283-2293. https://doi.org/10.1016/S1003-6326(13)62730-2

T. Manoja, R. Abinaya, R. Anuradha, S. Nagarajan, Investigation and In Vitro Studies of a ZrO₂/g-C₃N₄ Composite Coated on 316L Stainless Steel for Biomedical Applications. Materials and Corrosion, (2024)1-11. https://doi.org/10.1002/maco.202414525

J. Zhang, H. Tao, S. Wu, J.Y ang, M. Zhu, Enhanced durability of nitric oxide removal on TiO2 (P25) under visible light: Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C3N5. Applied Catalysis B: Environmental, 296, (2021) 120372. https://doi.org/10.1016/j.apcatb.2021.120372

L. Lu, G. Wang, M. Zou, , Wang, J., & Li, J. Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst. Applied Surface Science, 441, (2018) 1012-1023. https://doi.org/10.1016/j.apsusc.2018.02.080

L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Applied Surface Science, 391, (2017) 202-210. https://doi.org/10.1016/j.apsusc.2016.07.055

M. Zarei, Ultrasonic-assisted preparation of ZrO2/g-C3N4 nanocomposites with high visible-light photocatalytic activity for degradation of 4-chlorophenol in water. Water-Energy Nexus, 3, (2020) 135-142. https://doi.org/10.1016/j.wen.2020.08.002

X. He, D. Zhu, In situ solvothermal method of C 3 N 5@ NH 2-MIL-125 composites with enhanced visible-light photocatalytic performance. Journal of Materials Science: Materials in Electronics, (2021) 1-11. https://doi.org/10.1007/s10854-021-07308-0

E.S. Andrés, M. Toledano-Luque, A.D. Prado, M.A. Navacerrada, I. Mártil, G. González-Díaz, W. Bohne, J. Röhrich, E. Strub, Physical properties of high pressure reactively sputtered TiO2. Journal of Vacuum Science & Technology A, 23(6), (2005) 1523-1530. https://doi.org/10.1116/1.2056554

S. Gonuguntla, S. Sk, A. Tiwari, H. Mandal, P.N. Lakavath, V. Perupoga, U. Pal, Regulating surface structures for efficient electron transfer across h-BN/TiO2/gC3N4 photocatalyst for remarkably enhanced hydrogen evolution. Journal of Materials Science: Materials in Electronics, 32, (2021) 12191-12207. https://doi.org/10.1007/s10854-021-05848-z

Y. Jiao, Y. Zhang, G. Zhang, M. Tian, J. Zhao, T. Cui, Y. Yan, J. Jiang, Formation of Z‐scheme g‐C3N5‐BiOCl to enhance photocatalytic activity under visible light. Applied Organometallic Chemistry, 37(8), (2023) e7073. https://doi.org/10.1002/aoc.7073

Y.O. Ibrahim, A. Hezam, T.F. Qahtan, A.H. Al-Aswad, M.A. Gondal, Q.A. Drmosh, Laser-Assisted Synthesis of Z-Scheme TiO₂/rGO/gC₃N₄ Nanocomposites for Highly Enhanced Photocatalytic Hydrogen Evolution. Applied Surface Science, 534, (2020) 147578. https://doi.org/10.1016/j.apsusc.2020.147578

K.M. Lee, C.F. Kait, J.W. Lim, G.B. Teh, Raman Spectroscopy of TiO₂ Nanoparticles Synthesized by Hydrolysis of TiCl₄: Effect of Sulfate Ions Concentration. Proceedings of the 6th International Conference on Fundamental and Applied Sciences, (2021) 85–95. https://doi.org/10.1007/978-981-16-4513-6_8

L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Laser-excited excitonic luminescence of nanocrystalline TiO2 powder. Український фізичний журнал, 59(3), (2014) 248-255. https://doi.org/10.15407/ujpe59.03.0246

J. Liu, S. Wang, C. Zhao, J. Zheng, Engineered g-C3N5-based nanomaterials for photocatalytic energy conversion and environmental remediation. Nanomaterials, 13(3), (2023) 499. https://doi.org/10.3390/nano13030499

Z. Shahryari, M. Yeganeh, K. Gheisari, B. Ramezanzadeh, A brief review of the graphene oxide-based polymer nanocomposite coatings: preparation, characterization, and properties. Journal of Coatings Technology and Research, 18(4), (2021) 945-969. https://doi.org/10.1007/s11998-021-00488-8

D. Pathote, D. Jaiswal, V. Singh, C.K. Behera, Electrochemical corrosion behavior of tantalum coated 316L stainless steel by DC Magnetron sputtering for orthopedic applications. Applied Surface Science Advances, 13, (2023) 100365. https://doi.org/10.1016/j.apsadv.2022.100365

N.R. Vaidya, P. Aklujkar, A.R. Rao, Modification of natural gums for application as corrosion inhibitor: a review. Journal of Coatings Technology and Research, 19(1), (2022) 223-239. https://doi.org/10.1007/s11998-021-00510-z

G.K. Ağçeli, H. Hammachi, S.P. Kodal, N. Cihangir, Z. Aksu, A novel approach to synthesize TiO2 nanoparticles: biosynthesis by using Streptomyces sp. HC1. Journal of Inorganic and Organometallic Polymers and Materials, 30, (2020) 3221-3229. https://doi.org/10.1007/s10904-020-01486-w

X. Yuan, C. Zhou, Q. Jing, Q. Tang, Y. Mu, A. Du, Facile Synthesis of g-C₃N₄ Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium (VI) under Visible Light. Nanomaterials, 6(9), (2016) 173. https://doi.org/10.3390/nano6090173

M. Oves, M.O. Ansari, R. Darwesh, A. Hussian, M.F. Alajmi, H.A. Qari, Synthesis and Antibacterial Aspects of Graphitic C₃N₄@Polyaniline Composites. Coatings, 10(10), (2020) 950. https://doi.org/10.3390/coatings10100950

N. Khoshnood, M. Yeganeh, S.R.A. Zaree, A. Zamanian, An investigation on the biological and corrosion response of PEI coating on the AZ31 alloy. Journal of Coatings Technology and Research, 20(5), (2023) 1691-1701. https://doi.org/10.1007/s11998-023-00774-7

A. Bashir, H. Siddiqui, S. Naseem, A.S. Bhatti, Ecofriendly water-based solution processing: preliminary studies of Zn-ZrO2 thin films for microelectronics applications. Coatings, 11(8), (2021) 901. https://doi.org/10.3390/coatings11080901

Y. Gao, L. Wang, D. Li, The Surface Modification of ZrO2 Film by Zr/Nb Ion Implantation and First-Principles Calculation. Coatings, 13(10), (2023) 1696. https://doi.org/10.3390/coatings13101696

M. Zhu, Q. Zhang, Y. Yuan, S. Guo, Y. Huang, Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment. Journal of Electroanalytical Chemistry, 864, (2020) 114072. https://doi.org/10.1016/j.jelechem.2020.114072

P. Kumar, G. Anne, M.R. Ramesh, M. Doddamani, A. Prabhu, Enhancing the functionality of biodegradable Mg–Zn–Mn alloys using poly (lactic) acid (PLA) coating for temporary implants. Journal of Coatings Technology and Research, 21, (2024) 1525–1537. https://doi.org/10.1007/s11998-024-00913-8

A.J. Nathanael, J.H. Lee, S.I. Hong, Effect of processing parameters on the mechanical reliability of ZrN/hydroxyapatite nanocomposite coatings. Advanced Science Letters, 15(1), (2012) 285-290. https://doi.org/10.1166/asl.2012.4177

M.R. Noor El-Din, A.I. Hashem, R.E. Morsi, A. Abd El-Azeim, R.H. Mohamed, Facile fabrication of superhydrophobic nanocomposites coating materials using nanoemulsion polymerization technique and its application for protecting the petroleum carbon steel pipelines. Journal of Coatings Technology and Research, 20(1), (2023) 291-305. https://doi.org/10.1007/s11998-022-00669-z

S. Jafari, M.M. Atabaki, J. Idris, Comparative study on bioactive coating of Ti-6Al-4V alloy and 316 L stainless steel. Association of Metallurgical Engineers of Serbia, 18(2), (2012) 145-158.

S. Nagarajan, M. Mohana, P. Sudhagar, V. Raman, T. Nishimura, S. Kim, Y.S. Kang, N. Rajendran, Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility. ACS applied materials & interfaces, 4(10), (2012) 5134-5141. https://doi.org/10.1021/am301559r

H.S. Klapper, J. Göllner, A. Heyn, A. Burkert, Relevance of the cathodic process on the passivation of stainless steels–an approximation to the origin of the rouging phenomenon. Materials and corrosion, 63(1), (2012) 54-58. https://doi.org/10.1002/maco.201005668

D. Pathote, V. Singh, D. Jaiswal, R.K. Gautam, C.K. Behera, Improving the electrochemical corrosion behavior of stainless steel (316L) through the deposition of tantalum-based thin films. Materials Today: Proceedings, 112, (2024) 24-33. https://doi.org/10.1016/j.matpr.2023.08.003

R. Manonmani, S. Mohandoss, S. Sureshkumar, Prevention of Corrosion on 316L Stainless Steel by Nano Biocomposite Coating for Bone Tissue Application. International Journal of Creative Research Thoughts (IJCRT), 11(3), (2023) 969-986.

N. Yao, J. Chen, G. Zhao, Y. Huang, L. Yang, H. Li, Z. Sheng, UV irradiation grafting of acrylamide onto dopamine-modified 316L stainless steel. Journal of Coatings Technology and Research, 15, (2018) 1181-1189. https://doi.org/10.1007/s11998-018-0095-y

H. Alias, J. Alias, N.A. Alang, Anticorrosion strategy for magnesium alloys through a superhydrophobic approach utilizing slippery liquid-infused porous surface coating. Journal of Coatings Technology and Research, (2024) 1-20. https://doi.org/10.1007/s11998-024-01003-5

B. Diaz, L. Freire, M. Mojío, X.R. Nóvoa, Optimization of conversion coatings based on zinc phosphate on high strength steels, with enhanced barrier properties. Journal of Electroanalytical Chemistry, 737, (2015) 174-183. https://doi.org/10.1016/j.jelechem.2014.06.035

Y. Sasikumar, A.M. Kumar, R.S. Babu, M.M. Rahman, L.M. Samyn, A.L.F. de Barros, Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants. Journal of Materials Science: Materials in Medicine, 29, (2018) 1-14. https://doi.org/10.1007/s10856-018-6131-8

K. Kowalczyk, K. Przywecka, B. Grzmil, Influence of novel ammonium-modified zinc-free phosphate nanofillers on anticorrosive features of primer-less polyurethane top-coating compositions. Journal of Coatings Technology and Research, 16, (2019) 401-414. https://doi.org/10.1007/s11998-018-0119-7

Y. Cai, X. Quan, G. Li, N. Gao, Anticorrosion and scale behaviors of nanostructured ZrO2–TiO2 coatings in simulated geothermal water. Industrial & Engineering Chemistry Research, 55(44), (2016) 11480-11494. https://doi.org/10.1021/acs.iecr.6b02920

M. Szociński, K. Darowicki, K. Schaefer, Application of impedance imaging to evaluation of organic coating degradation at a local scale. Journal of Coatings Technology and Research, 10, (2013) 65-72. https://doi.org/10.1007/s11998-012-9458-y

S. Nagarajan, V. Raman, N. Rajendran, Evaluation of passive film behaviour of super austenitic stainless steels at different potential regions using dynamic electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 14, (2010) 1197-1204. https://doi.org/10.1007/s10008-009-0948-5

P. Dhaiveegan, N. Elangovan, T. Nishimura, N. Rajendran, Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine-urban environment: field study. RSC Advances, 6(53), (2016) 47314-47324. https://doi.org/10.1039/C6RA04015B

L. Floroian, F. Sima, M. Florescu, M. Badea, A.C. Popescu, N. Serban, I.N. Mihailescu, Double layered nanostructured composite coatings with bioactive silicate glass and polymethylmetacrylate for biomimetic implant applications. Journal of Electroanalytical Chemistry, 648(2), (2010) 111-118. https://doi.org/10.1016/j.jelechem.2010.08.005

D. Xia, Y. Ji, Y. Mao, C. Deng, Y. Zhu, W. Hu, Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface. Acta Metallurgica Sinica, 59(2), (2022) 297-308.

H. Gerengi, S. Lorenzi, M.M. Solomon, P. Slepski, S. Gratton, M. Cabrini, A Probe into the Corrosion Behavior of a WE43B Magnesium Alloy in a Simulated Body Fluid using Dynamic Electrochemical Impedance Spectroscopy. Journal of Materials Engineering and Performance, (2023)1-11. https://doi.org/10.1007/s11665-023-09015-9

M. Yousefpour, A. Afshar, X. Yang, X. Li, B. Yang, Y. Wu, J. Chen, X. Zhang, Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium. Journal of Electroanalytical Chemistry, 589(1), (2006) 96-105. https://doi.org/10.1016/j.jelechem.2006.01.020

M.U. Joshi, S.P. Kulkarni, M. Choppadandi, M. Keerthana, G. Kapusetti, Current state of art smart coatings for orthopedic implants: A comprehensive review. Smart Materials in Medicine, 4, (2023) 661-679. https://doi.org/10.1016/j.smaim.2023.06.005

R. Ahmadi, A. Afshar, In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS. Surface and Coatings Technology, 405, (2021) 126594. https://doi.org/10.1016/j.surfcoat.2020.126594

M. Karthega, S. Nagarajan, N. Rajendran, In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochimica Acta, 55(6), (2010) 2201-2209. https://doi.org/10.1016/j.electacta.2009.11.057

K.K. Amirtharaj Mosas, A.R. Chandrasekar, A. Dasan, A. Pakseresht, D. Galusek, Recent advancements in materials and coatings for biomedical implants. Gels, 8(5), (2022) 323. https://doi.org/10.3390/gels8050323

S.M. Londoño‐Restrepo, L.F. Zubieta‐Otero, R. Jeronimo‐Cruz, M.A. Mondragon, M.E. Rodriguez‐García, Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones. Journal of Raman Spectroscopy, 50(8), (2019) 1120-1129. https://doi.org/10.1002/jrs.5614

T.G.M. Bonadio, F. Sato, A.N. Medina, W.R. Weinand, M.L. Baesso, W.M. Lima, Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite. Journal of Applied Physics, 113(22), (2013) 223505. https://doi.org/10.1063/1.4809653

A. Salam, L. Lucia, H. Jameel, Starch derivatives that contribute significantly to the bonding and antibacterial character of recycled fibers. ACS omega, 3(5), (2018) 5260-5265. https://doi.org/10.1021/acsomega.8b00307

M. Yunusa, X. Shu, S. Guan, Y. Liu, M. Ge, J. Wu, S. Yang, Osteogenic potential of polyacrylonitrile and multiwalled carbon nanotube composite coated on anodised titanium alloy for orthopedic applications. Polymer Bulletin, 79, (2022) 3147–3161. https://doi.org/10.1021/acsomega.8b00307

Downloads

Published

2025-01-30

How to Cite

1.
Muthu Krishnan PS, Tharmaraj M, Radhakrishnan A, Ramani A, Srinivasan N. Synthesis and Electrochemical Characterization of TiO2/g-C3N5 Coated 316L Stainless Steel for Orthopedic Applications. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Jan. 30 [cited 2025 Oct. 3];7(1):219-36. Available from: https://asianrepo.org/index.php/irjmt/article/view/114