Bismuth Vanadate Microspheres: Utilizing Temperature-driven Phase Transition for Improved Sunlight-Driven Photocatalysis and Antibacterial Efficacy

Authors

  • Rehna Parameswaran Department of Physics, Nanotechnology Lab, Kongunadu Arts and Science College, Coimbatore-641029, Tamil Nadu, India Author
  • Senthil Kumar Nagarajan Department of Physics, Nanotechnology Lab, Kongunadu Arts and Science College, Coimbatore-641029, Tamil Nadu, India Author
  • Chandrasekar Sivakumar Department of Physics, National Chung Hsing University, Taichung - 40227, Taiwan Author
  • Balachandran Subramanian Functional Materials and Materials Chemistry Laboratory, Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India Author
  • Raju S Department of Physics, KPR Institute Engineering and Technology, Coimbatore, 641 407, Tamilnadu, India Author
  • Mohanraj Kumar Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan Author

DOI:

https://doi.org/10.54392/irjmt25117

Keywords:

BiVO4, Pollutant, Pathogens, Water Purification

Abstract

In this work, bismuth vanadate (BiVO4) microspheres are synthesized using a simple, cost effective, co-precipitation technique. This study investigates how the annealing temperature influences the photocatalytic and antimicrobial properties of nanoparticles made of BiVO4. Examining the phase structure, chemical compounds state, composition of chemicals, shape, as well as optical characteristics of the prepared materials, by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Raman analysis, UV-Vis diffuse reflectance spectroscopy (DRS), Photoluminescence (PL) spectroscopy studies. Based on XRD analysis data, BiVO4 exhibits a phase change of the tetragonal structure to monoclinic at 500 °C (BiVO4@500 °C). It is interesting to note that under sunlight irradiation, BiVO4 nanoparticles annealed at 500 °C show excellent photocatalytic behavior in opposition to the dye methylene blue (k = 0.0151 min-1). According to investigations on the development of antibacterial activity through the utilization of BiVO4@500 °C sample by well diffusion method appears to be an effective growth inhibitor of both gram-positive and gram-negative bacteria, such as Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Proteus vulgaris (P. vulgaris)), respectively. 

References

M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, S.K. Rashmi, Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. Journal of Materials Science: Materials in Electronics, 29, (2018) 20395–20414. https://doi.org/10.1007/s10854-018-0174-y

K. Thirumalai, S. Balachandran, K. Selvam, M. Swaminathan, Nanoribbon-structured CdWO4–ZnO for multiple applications. Emerging Materials Research, 5, (2016) 264–276. https://doi.org/10.1680/jemmr.15.00085

S. Rajasri, B. Krishnakumar, A.J.F.N. Sobral, S. Balachandran, M. Swaminathan, I. Muthuvel, Development of Cd3(PO4)2/rGO coupled semiconductor system for effective mineralization of basic Violet 10 (BV 10) under UV-A light. Materials Today: Proceedings, 15(3), (2019) 471–480. https://doi.org/10.1016/j.matpr.2019.04.109

S. Selvinsimpson, P. Gnanamozhi, V. Pandiyan, M. Govindasamy, M.A. Habila, N. AlMasoud, Y. Chen, Synergetic effect of Sn doped ZnO nanoparticles synthesized via ultrasonication technique and its photocatalytic and antibacterial activity. Environmental Research, 197, (2021) 111115. https://doi.org/10.1016/j.envres.2021.111115

T. Munawar, S. Yasmeen, F. Mukhtar, M.S. Nadeem, K. Mahmood, M. Saqib Saif, M. Hasan, A. Ali, F. Hussain, F. Iqbal, Zn0.9Ce0.05M0.05O (M = Er, Y, V) nanocrystals: Structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity. Ceramics International, 46(10), (2020) 14369–14383. https://doi.org/10.1016/j.ceramint.2020.02.232

P. Gnanamozhi, V. Renganathan, S.-M. Chen, V. Pandiyan, M. Antony Arockiaraj, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, K.F. Alanzi, Influence of Nickel concentration on the photocatalytic dye degradation (methylene blue and reactive red 120) and antibacterial activity of ZnO nanoparticles. Ceramics International, 46(11), (2020) 18322–18330. https://doi.org/10.1016/j.ceramint.2020.05.054

T. Munawar, M.S. Nadeem, F. Mukhtar, M. Hasan, K. Mahmood, M.I. Arshad, A. Hussain, A. Ali, M.S. Saif, F. Iqbal, Rare earth metal co-doped Zn0·9La0.05M0.05O (M = Yb, Sm, Nd) nanocrystals; energy gap tailoring, structural, photocatalytic and antibacterial studies. Materials Science in Semiconductor Processing, 122, (2021) 105485. https://doi.org/10.1016/j.mssp.2020.105485

K.P. Ghoderao, S.N. Jamble, R.B. Kale, Hydrothermally synthesized Cd-doped ZnO nanostructures with efficient sunlight-driven photocatalytic and antibacterial activity. Journal of Materials Science: Materials in Electronics, 30, (2019) 11208–11219. https://doi.org/10.1007/s10854-019-01466-y

V. Beena, S. Ajitha, S.L. Rayar, C. Parvathiraja, K. Kannan, G. Palani, Enhanced photocatalytic and antibacterial activities of ZnSe nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 31, (2021) 4390–4401. https://doi.org/10.1007/s10904-021-02053-7

M.S. Nadeem, T. Munawar, F. Mukhtar, M. Naveed ur Rahman, M. Riaz, F. Iqbal, Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceramics International, 47(8), (2021) 11109–11121. https://doi.org/10.1016/j.ceramint.2020.12.234

R. Dhilip Kumar, K. Sreevani, G. Radhika, V. Sethuraman, V. Shanmugavalli, S. Nagarani, S. Balachandran, M. Kumar, One-Pot synthesis of CuO-Cu2O nanoscrubbers for high-performance pseudo-supercapacitors applications. Materials Science and Engineering: B, 281 (2022) 115755. https://doi.org/10.1016/j.mseb.2022.115755

A. Helal, S.M. El-Sheikh, J. Yu, A.I. Eid, S.A. El-Haka, S.E. Samra, Novel synthesis of BiVO4 using homogeneous precipitation and its enhanced photocatalytic activity. Journal of Nanoparticle Research, 22, (2020). https://doi.org/10.1007/s11051-020-04861-3

Y.M. Hunge, A. Uchida, Y. Tominaga, Y. Fujii, A.A. Yadav, S. Kang, N. Suzuki, I. Shitanda, T. Kondo, M. Itagaki, M. Yuasa, S. Gosavi, A. Fujishima, C. Terashima, Visible Light-Assisted Photocatalysis Using Spherical-Shaped BiVO4 Photocatalyst. Catalysts, 11(4), (2021) 460. https://doi.org/10.3390/catal11040460

N.D. Phu, L.H. Hoang, P.K. Vu, M.-H. Kong, X.-B. Chen, H.C. Wen, W.C. Chou, Control of crystal phase of BiVO4 nanoparticles synthesized by microwave assisted method. Journal of Materials Science: Materials in Electronics, 27, (2016) 6452–6456. https://doi.org/10.1007/s10854-016-4585-3

M. Selvamani, A. Kesavan, A. Arulraj, P.C. Ramamurthy, M. Rahaman, S. Pandiaraj, M. Thiruvengadam, E.J. Sacari Sacari, E.M. Limache Sandoval, M.R. Viswanathan, Microwave-assisted synthesis of flower-like MnMoO4 nanostructures and their photocatalytic performance. Materials, 17(7), (2024) 1451. https://doi.org/10.3390/ma17071451

M. Selvamani, S. Balachandran, A.V. Kesavan, V. Vinoth, Bi2MoO6 nano-flowers for Bi-functional application: Anticancer activity against B16F10 (Mice melanoma) and photocatalytic dye degradation. Surfaces and Interfaces, 42, (2023) 103340. https://doi.org/10.1016/j.surfin.2023.103340

M. Ganeshbabu, N. Kannan, P.S. Venkatesh, G. Paulraj, K. Jeganathan, D. MubarakAli, Synthesis and characterization of BiVO4 nanoparticles for environmental applications. RSC Advances, 10, (2020) 18315–18322. https://doi.org/10.1039/D0RA01065K

R.D. Kumar, S. Nagarani, S. Balachandran, C. Brundha, S.H. Kumar, R. Manigandan, M. Kumar, V. Sethuraman, S.H. Kim, High performing hexagonal-shaped ZnO nanopowder for Pseudo-supercapacitors applications. Surfaces and Interfaces, 33, (2022) 102203. https://doi.org/10.1016/j.surfin.2022.102203

E.T.D. Kumar, K. Thirumalai, S. Balachandran, R. Aravindhan, M. Swaminathan, J. Raghava Rao, Solar light driven degradation of post tanning water at heterostructured BiVO4-ZnO mixed oxide catalyst interface. Surfaces and Interfaces, 8, (2017) 147–153. https://doi.org/10.1016/j.surfin.2017.05.009

S. Muthamizh, J. Yesuraj, R. Jayavel, D. Contreras, K. Arul Varman, R.V. Mangalaraja, Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 32, (2021) 2744–2756. https://doi.org/10.1007/s10854-020-05007-w

Z. Wang, W. Luo, S. Yan, J. Feng, Z. Zhao, Y. Zhu, Z. Li, Z. Zou, BiVO4 nano–leaves: Mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation. CrystEngComm, 13, (2011) 2500. https://doi.org/10.1039/C0CE00799D

H.M. Zhang, J.B. Liu, H. Wang, W.X. Zhang, H. Yan, Rapid microwave-assisted synthesis of phase controlled BiVO4 nanocrystals and research on photocatalytic properties under visible light irradiation. Journal of Nanoparticle Research, 10, (2008) 767–774. https://doi.org/10.1007/s11051-007-9310-y

V.H. Nguyen, Q.T.P. Bui, D.-V.N. Vo, K.T. Lim, L.G. Bach, S.T. Do, T. Van Nguyen, V.D. Doan, T.D. Nguyen, T.D. Nguyen, Effective photocatalytic activity of sulfate-modified BiVO4 for the decomposition of methylene blue under LED visible light. Materials, 12, (2019) 2681. https://doi.org/10.3390/ma12172681

R. Gaur, P. Jeevanandam, Synthesis of SnS2 nanoparticles and their application as photocatalysts for the reduction of Cr(VI). Journal of Nanoscience and Nanotechnology, 18(1), (2018) 165–177. https://doi.org/10.1166/jnn.2018.14604

H. Lin, H. Ye, S. Chen, Y. Chen, One-pot hydrothermal synthesis of BiPO4/BiVO4 with enhanced visible-light photocatalytic activities for methylene blue degradation. RSC Advances, 4, (2014) 10968. https://doi.org/10.1039/C3RA45288C

G.S. Kamble, Y.C. Ling, Solvothermal synthesis of facet-dependent BiVO4 photocatalyst with enhanced visible-light-driven photocatalytic degradation of organic pollutant: assessment of toxicity by zebrafish embryo. Scientific Reports, 10, (2020). https://doi.org/10.1038/s41598-020-69706-4

H. Cai, L. Cheng, F. Xu, H. Wang, W. Xu, F. Li, Fabrication of the heterojunction catalyst BiVO4 /P25 and its visible-light photocatalytic activities. Royal Society Open Science, 5, (2018) 180752. https://doi.org/10.1098/rsos.180752

M.M. Sajid, N. Amin, N.A. Shad, S.B. khan, Y. Javed, Z. Zhang, Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes. Materials Science and Engineering: B, 242, (2019) 83–89. https://doi.org/10.1016/j.mseb.2019.03.012

W.H. Saputera, A.F. Amri, R.R. Mukti, V. Suendo, H. Devianto, D. Sasongko, Photocatalytic degradation of palm oil mill effluent (POME) waste using BiVO4 based catalysts. Molecules, 26, (2021) 6225. https://doi.org/10.3390/molecules26206225

V. Pandey, N. Singh, F.Z. Haque, Enhancement in structural and optical properties of boron doped ZnO nanostructures synthesized by simple aqueous solution growth technique. Journal of Advanced Physics, 6, (2017) 358–366.

S.R.M. Thalluri, C. Martinez-Suarez, A. Virga, N. Russo, G. Saracco, Insights from crystal size and band gap on the catalytic activity of monoclinic BiVO4. International Journal of Chemical Engineering and Applications, 4(5), (2013) 305–309. https://doi.org/10.7763/IJCEA.2013.V4.315

D. Arivukarasan, C.R. Dhas, R. Venkatesh, S.E.S. Monica, A.J. Josephine, K.C.M. Gnanamalar, B. Subramanian, Template-free and cost-effective nebulizer spray-coated BiVO4 nanostructured thin films for photocatalytic applications. Applied Physics A, 126, (2020) 1-13. https://doi.org/10.1007/s00339-019-3261-x

A.J. Josephine, C. Ravi Dhas, R. Venkatesh, D. Arivukarasan, A. Jennifer Christy, S. Esther Santhoshi Monica, S. Keerthana, Effect of pH on visible-light-driven photocatalytic degradation of facile synthesized bismuth vanadate nanoparticles. Materials Research Express, 7, (2020) 015036. https://doi.org/10.1088/2053-1591/ab653f

A. Umar, R. Kumar, G. Kumar, H. Algarni, S.H. Kim, Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. Journal of Alloys and Compounds, 648, (2015) 46–52. https://doi.org/10.1016/j.jallcom.2015.04.236

M.A. Mahmoud, A. Poncheri, Y. Badr, M.G. Abd El Wahed, Photocatalytic degradation of methyl red dye. South African Journal of Science, 105(7), (2010). https://sajs.co.za/article/view/10291

M. Guo, Q. He, A. Wang, W. Wang, Z. Fu, A novel, simple and green way to fabricate BiVO4 with excellent photocatalytic activity and its methylene blue decomposition mechanism. Crystals, 6(7), (2016) 81. https://doi.org/10.3390/cryst6070081

M. Kumar, R. Vaish, Photocatalytic dye degradation using BiVO4–paint composite coatings. Materials Advances, 3, (2022) 5796–5806. https://doi.org/10.1039/D2MA00316C

P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technology, 219, (2012) 158–164. https://doi.org/10.1016/j.powtec.2011.12.032

P. Intaphong, A. Phuruangrat, P. Pookmanee, Synthesis and characterization of BiVO4 photocatalyst by microwave method. Integrated Ferroelectrics, 175, (2016) 51–58. https://doi.org/10.1080/10584587.2016.1200910

Z. Zhu, L. Zhang, J. Li, J. Du, Y. Zhang, J. Zhou, Synthesis and photocatalytic behavior of BiVO4 with decahedral structure. Ceramics International, 39(7), (2013) 7461–7465. https://doi.org/10.1016/j.ceramint.2013.02.093

R. Sharma, Uma, S. Singh, A. Verma, M. Khanuja, Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. Journal of Photochemistry and Photobiology B: Biology, 162, (2016) 266–272. https://doi.org/10.1016/j.jphotobiol.2016.06.035

Downloads

Published

2025-01-30

How to Cite

1.
Parameswaran R, Nagarajan SK, Sivakumar C, Subramanian B, S R, Kumar M. Bismuth Vanadate Microspheres: Utilizing Temperature-driven Phase Transition for Improved Sunlight-Driven Photocatalysis and Antibacterial Efficacy. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Jan. 30 [cited 2025 Sep. 11];7(1):247-63. Available from: https://asianrepo.org/index.php/irjmt/article/view/116