Feature Engineering Trends in Text-Based Affective Computing: Rules to Advance Deep Learning Models

Authors

DOI:

https://doi.org/10.54392/irjmt2528

Keywords:

Affective Computing, Emotion Detection, Feature Engineering, Text Based, Embedding

Abstract

Understanding emotions in textual data, particularly within dynamic social media platforms such as YouTube, Facebook, and Twitter, presents significant challenges. This paper aims to provide a comprehensive review of emotion detection techniques in affective computing, highlighting key advancements, challenges, and ethical concerns. The key contributions of this review include an examination of foundational theories of NLP-based emotion recognition, an analysis of the role of affect lexicons in emotional classification, and a review of commonly used datasets for training emotion detection models. Additionally, it explores various feature extraction techniques, including lexicon-based approaches such as SentiWordNet and NRC Emotion Lexicon, statistical and syntactic features like n-grams and POS tags, and semantic embeddings from deep learning models such as Word2Vec, GloVe, BERT, RoBERTa, and GPT. Findings show that while deep learning and transformer models improve contextual understanding, they also introduce challenges such as high computational costs, data imbalance, and domain adaptability issues. Bias in training data poses ethical risks, potentially reinforcing stereotypes and enabling manipulative applications like targeted advertising and misinformation. Key research gaps include the need for improved feature representations, bias mitigation, enhanced model accuracy and fairness. Traditional models struggle with real-world complexities, while transformer-based models face challenges related to scalability, dataset limitations, and interpretability. Addressing these challenges will enhance affective computing accuracy, fairness, and applicability across industries such as healthcare, education, and human-computer interaction.

References

H. Nida, K. Mahira, M. Mudasir, M. Mudasir Ahmed, M. Mohsin, Automatic emotion classifier, in Progress in Advanced Computing and Intelligent Engineering, Advances in Intelligent Systems and Computing, Springer, 713, (2019) 565–572. https://doi.org/10.1007/978-981-13-1708-8_52

E. Parker, W. Nasir, O. Benson, (2024) Enhancing Emotion Detection with Sentiment Analysis Insights. Preprints, 1-11. https://doi.org/10.20944/preprints202404.0059.v1

J. Suttles, N. Ide, (2013) Distant supervision for emotion classification with discrete binary values. In International Conference on Intelligent Text Processing and Computational Linguistics, Berlin, 121-136. https://doi.org/10.1007/978-3-642-37256-8_11

I. Blekanov, M. Kukarkin, A. Maksimov, S. Bodrunova, (2018) Sentiment Analysis for Ad Hoc Discussions Using Multilingual Knowledge-Based Approach. in Proceedings of the 3rd International Conference on Applications in Information Technology, 117-121. https://doi.org/10.1145/3274856.3274880

S. Srivastava, N. Arora, V. Gupta, An Efficient Deep Learning Model using Harris-Hawk Optimizer for Prognostication of Mental Health Disorders. International Research Journal of Multidisciplinary Technovation, 6(4), (2024) 106-123. https://doi.org/10.54392/irjmt2449

O. A. Nasr, A. A. Alajab, A. A. Ahmed, K. Mohiuddin, F. Bin Zafrah, Asynchronous learning techniques during the COVID 19 Pandemic. International Research Journal of Multidisciplinary Technovation 3(2), (2021) 39-48. https://doi.org/10.34256/irjmt2127

J. Zhang, Z. Yin, P. Chen, S. Nichele, Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information fusion, 59, (2020) 103-126. https://doi.org/10.1016/j.inffus.2020.01.011

H. Gunes, M. Pantic, Automatic, dimensional and continuous emotion recognition. International Journal of Synthetic Emotions (IJSE), 1(1), (2010) 68-99. https://doi.org/10.4018/jse.2010101605

R.W. Picard, Affective computing. Choice Reviews, 35(9), (1998) 35-5124.

F. Draxler, L. Hirsch, J. Li, C. Oechsner, S.T. Völkel, A. Butz, Flexibility and Social Disconnectedness: Assessing University Students’ Well-Being Using an Experience Sampling Chatbot and Surveys Over Two Years of COVID-19. DIS '22: Proceedings of the 2022 ACM Designing Interactive Systems Conference, (2022) 217–231. https://doi.org/10.1145/3532106.3533537

P. Pereira, H. Moniz, J. P. Carvalho, Deep emotion recognition in textual conversations: a survey. Artificial Intelligence Review, 58(1), (2024) 10. https://doi.org/10.1007/s10462-024-11010-y

B.K. Nagaraj, A. Kalaivani, R.S. Begum, S. Akila, H.K. Sachdev, N.S. Kumar, The Emerging Role of Artificial Intelligence in STEM Higher Education: A Critical Review. International Research Journal of Multidisciplinary Technovation, 5(5), (2023) 1–19. https://doi.org/10.54392/irjmt2351

S.J. Lee, J. Lim, L. Paas, H.S. Ahn, Transformer transfer learning emotion detection model: synchronizing socially agreed and self-reported emotions in big data. Neural Computing and Applications, 35(15), (2023) 10945–10956. https://doi.org/10.1007/s00521-023-08276-8

H. Binali, C. Wu, V. Potdar, Computational approaches for emotion detection in text. In 4th IEEE International Conference on Digital Ecosystems and Technologies, IEEE, United Arab Emirates. https://doi.org/10.1109/DEST.2010.5610650

C. Strapparava, R. Mihalcea, SemEval-2007 task 14. in Proceedings of the 4th International Workshop on Semantic Evaluations, (2007) 70-74. https://doi.org/10.3115/1621474.1621487

F.M. Shah, A.S. Reyadh, A.I. Shaafi, S. Ahmed, F.T. Sithil, (2019) Emotion detection from tweets using AIT-2018 dataset. in 2019 5th International Conference on Advances in Electrical Engineering ICAEE, IEEE, Bangladesh. https://doi.org/10.1109/ICAEE48663.2019.8975433

S. Fathy, N. El-haggar, M.H. Haggag, A Hybrid Model for Emotion Detection from Text. International Journal of Information Retrieval Research, 7(1), (2017) 32–48. https://doi.org/10.4018/IJIRR.2017010103

C.K. Chung, J.W. Pennebaker, Linguistic Inquiry and Word Count (LIWC). Applied Natural Language Processing, (2012) 206–229.

F. Å. Nielsen, A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint, 718, (2011) 93–98.

A. Esuli, F. Sebastiani, SentiWordNet: a high-coverage lexical resource for opinion mining. Evaluation, 17(1), (2007) 26.

I.B. Araújo, C.R.N. Brito, I.A. Urbano, V.A. Dominici, M.A. Silva Filho, W.L. Silveira, B.P.G.L. Damasceno, A.C. Medeiros, E. Egito, Similarity between the in vitro activity and toxicity of two different fungizone™/lipofundin™ admixtures. Acta cirurgica brasileira, 20, (2005) 129-133. https://doi.org/10.1590/S0102-86502005000700022

S. Baccianella, A. Esuli, F. Sebastiani, Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In Lrec, 10, (2010) 2200-2204.

A. Esuli, F. Sebastiani, Sentiwordnet: A publicly available lexical resource for opinion mining. In LREC, 6, (2006) 417-422.

L. Vinet, A. Zhedanov, A ‘missing’ family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 44(8), (2011) 085201. https://doi.org/10.1088/1751-8113/44/8/085201

B. Gaind, V. Syal, S. Padgalwar, Emotion Detection and Analysis on Social Media. Global Journal of Engineering Science and Researches, (2019) 78–89. https://doi.org/10.48550/arXiv.1901.08458

J. Posner, J.A. Russell, B.S. Peterson, The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and psychopathology, 17(3), (2005) 715-734. https://doi.org/10.1017/S0954579405050340

K. K. Agustiningsih, E. Utami, M.A. Alsyaibani, Sentiment analysis of COVID-19 vaccines in Indonesia on Twitter using pre-trained and self-training word embeddings. Jurnal Ilmu Komputer dan Informasi, 15(1), (2022) 39-46. https://doi.org/10.21609/jiki.v15i1.1044

M. Z. Asghar, A. Khan, A. Bibi, F. M. Kundi, H. Ahmad, Sentence-level emotion detection framework using rule-based classification. Cognitive Computation, 9, (2017) 868-894. https://doi.org/10.1007/s12559-017-9503-3

G. Sidorov, S. Miranda-Jiménez, F. Viveros-Jiménez, A. Gelbukh, N. Castro-Sánchez, F. Velásquez, I.D. Rangel, S. Suárez-Guerra, A. Treviño, J. Gordon, (2013) Empirical study of machine learning based approach for opinion mining in tweets. In Advances in Artificial Intelligence, Mexico. https://doi.org/10.1007/978-3-642-37807-2_1

S. Mohammad, P. Turney, Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text, (2010) 26-34.

S.M. Mohammad, P.D. Turney, Crowdsourcing a word–emotion association lexicon. Computational intelligence, 29(3), (2013) 436-465. https://doi.org/10.1111/j.1467-8640.2012.00460.x

L. Wang, C. Quan, Y. Bao, F. Ren, (2014) Construction of a Chinese Emotion Lexicon from Ren-CECps. In Intelligent Computing Methodologies: 10th International Conference, ICIC 2014, Springer International Publishing, China. https://doi.org/10.1007/978-3-319-09339-0_63

H. Krishnan, M.S. Elayidom, T. Santhanakrishnan, Emotion detection of tweets using naïve bayes classifier. Emotion, 4(11), (2017) 457-462.

M. Taboada, J. Brooke, M. Tofiloski, K. Voll, M. Stede, Lexicon-Based Methods for Sentiment Analysis. Computational Linguistic, 37(2), (2011) 267–307. https://doi.org/10.1162/COLI_a_00049

D. Seal, U.K. Roy, R. Basak, (2020) Sentence-Level Emotion Detection from Text Based on Semantic Rules. Information and Communication Technology for Sustainable Development, Springer Singapore. https://doi.org/10.1007/978-981-13-7166-0_42

F.A. Acheampong, C. Wenyu, H. Nunoo‐Mensah, Text‐based emotion detection: Advances, challenges, and opportunities. Engineering Reports, 2(7), (2020) e12189. https://doi.org/10.1002/eng2.12189

M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, Lexicon-Based Methods for Sentiment Analysis, Computational Linguistics, 37(2) (2011) 267–307. https://doi.org/10.1162/COLI_a_00049

L. Oneto, F. Bisio, E. Cambria, D. Anguita, Statistical Learning Theory and ELM for Big Social Data Analysis. IEEE Computational Intelligence Magazine, 11(3), (2016) 45–55. https://doi.org/10.1109/MCI.2016.2572540

D. Seal, U. K. Roy, and R. Basak, “Sentence-Level Emotion Detection from Text Based on Semantic Rules,” in Information and Communication Technology for Sustainable Development, Advances in Intelligent Systems and Computing, vol. 933, Springer Singapore, (2020) 423–430. https://doi.org/10.1007/978-981-13-7166-0_42

S. Y. M. Lee, Y. Chen, C. Huang, S. Li, Detecting Emotion Causes With A Linguistic Rule‐Based Approach 1. Computational Intelligence, 29(3), (2013) 390-416. https://doi.org/10.1111/j.1467-8640.2012.00459.x

S. Shaheen, W. El-Hajj, H. Hajj, S. Elbassuoni, Emotion recognition from text based on automatically generated rules. IEEE International Conference on Data Mining Workshop, IEEE, China. https://doi.org/10.1109/ICDMW.2014.80

U. Gupta, A. Chatterjee, R. Srikanth, P. Agrawal, A Sentiment-and-Semantics-Based Approach for Emotion Detection in Textual Conversations. arXiv. https://doi.org/10.48550/arXiv.1707.06996

U. Orizu, (2018) Implicit Emotion Detection in Text. Aston University.

J. Herzig, M. Shmueli-Scheuer, D. Konopnicki, (2017) Emotion Detection from Text via Ensemble Classification Using Word Embeddings. in Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, 269–272. https://doi.org/10.1145/3121050.3121093

D. Naresh Kumar, G. Deepak, A. Santhanavijayan, A novel semantic approach for intelligent response generation using emotion detection incorporating NPMI measure. Procedia Computer Science, 167, (2020) 571-579. https://doi.org/10.1016/j.procs.2020.03.320

M. Polignano, P. Basile, M. de Gemmis, G. Semeraro, A comparison of word-embeddings in emotion detection from text using bilstm, cnn and self-attention. In Adjunct publication of the 27th conference on user modeling, adaptation and personalization, (2019) 63-68. https://doi.org/10.1145/3314183.3324983

M.S. Akhtar, D. Chauhan, D. Ghosal, S. Poria, A. Ekbal, P. Bhattacharyya, “Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis. Proceedings of the 2019 Conference of the North, Stroudsburg, PA, USA: Association for Computational Linguistics, arXiv, (2019) 370–379. https://doi.org/10.48550/arXiv.1905.05812

S. Banothu, S. Akula, V. Akarapu, T.R.L. Rao, Emotion Extraction and Classification from Twitter Text. Proceedings of the International Conference on IoT Based Control Networks & Intelligent Systems - ICICNIS 2021, SSRN. https://dx.doi.org/10.2139/ssrn.3884771

W. Graterol, J. Diaz-Amado, Y. Cardinale, I. Dongo, E. Lopes-Silva, C. Santos-Libarino, Emotion Detection for Social Robots Based on NLP Transformers and an Emotion Ontology. Sensors, 21(4), (2021) 1322. https://doi.org/10.3390/s21041322

M. Hasan, E. Rundensteiner, E. Agu, Automatic emotion detection in text streams by analyzing Twitter data. International Journal of Data Science and Analytics, 7, (2019) 35–51. https://doi.org/10.1007/s41060-018-0096-z

A. Chatterjee, U. Gupta, M.K. Chinnakotla, R. Srikanth, M. Galley, P. Agrawal, Understanding Emotions in Text Using Deep Learning and Big Data. Computers in Human Behavior, 93, (2019) 309–317. https://doi.org/10.1016/j.chb.2018.12.029

V. K. Jain, S. Kumar, S. L. Fernandes, Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. Journal of Computational Science, 21, (2017) 316–326. https://doi.org/10.1016/j.jocs.2017.01.010

F. Ghanbari-Adivi, M. Mosleh, Text emotion detection in social networks using a novel ensemble classifier based on Parzen Tree Estimator (TPE). Neural Computing and Applications, 31(12), (2019) 8971-8983. https://doi.org/10.1007/s00521-019-04230-9

W. Wang, L. Chen, K. Thirunarayan, A. P. Sheth, (2012) Harnessing Twitter ‘Big Data’ for Automatic Emotion Identificatio. International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, IEEE, Netherlands. https://doi.org/10.1109/SocialCom-PASSAT.2012.119

A. Chatterjee, K.N. Narahari, M. Joshi, P. Agrawal, (2019) SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text. in Proceedings of the 13th International Workshop on Semantic Evaluation, Stroudsburg, Association for Computational Linguistics, USA, https://doi.org/10.18653/v1/S19-2005

K.N. Singh, S.D. Devi, H.M. Devi, A. K. Mahanta, A novel approach for dimension reduction using word embedding: An enhanced text classification approach. International Journal of Information Management Data Insights, 2(1), (2022) 100061. https://doi.org/10.1016/j.jjimei.2022.100061

M. Hasan, E. Rundensteiner, E. Agu, (2021) DeepEmotex: Classifying Emotion in Text Messages using Deep Transfer Learning. 2021 IEEE International Conference on Big Data (Big Data), IEEE, USA. https://doi.org/10.1109/BigData52589.2021.9671803

A.B. Zadeh, P.P. Liang, S. Poria, E. Cambria, L.P. Morency, Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 1, (2018) 2236-2246. https://doi.org/10.18653/v1/P18-1208

X. Wang, W. Jiang, Z. Luo, Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers, (2016) 2428-2437.

P. Zhong, D. Wang, C. Miao, Knowledge-enriched transformer for emotion detection in textual conversations. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, 165–176. https://doi.org/10.18653/v1/D19-1016

J. Piskorski, G. Jacquet, TF-IDF Character N-grams versus Word Embedding-based Models for Fine-grained Event Classification: A Preliminary Study. In Proceedings of the Workshop on Automated Extraction of Socio-political Events from News, (2020) 26-34.

T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin, (2017) Advances in pre-training distributed word representations. arXiv preprint arXiv:1712.09405.

M. Mohd, R. Jan, N. Hakak, Enhanced bootstrapping algorithm for automatic annotation of tweets. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 14(2), (2020) 35–60. https://doi.org/10.4018/IJCINI.2020040103

M. Kowsher, M.S.I. Sobuj, M.F. Shahriar, N.J. Prottasha, M.S. Arefin, P.K. Dhar, T. Koshiba, An enhanced neural word-embedding model for transfer learning. Applied Sciences, 12(6), (2022). 2848. https://doi.org/10.3390/app12062848

C. Li, W. Xing, Natural Language Generation Using Deep Learning to Support MOOC Learners. International Journal of Artificial Intelligence in Education, 31(2), (2021) 186–214. https://doi.org/10.1007/s40593-020-00235-x

S. Goel, Emotion Classification Using Nature Based Optimization with Transformers And Transfer Learning. Journal of Pharmaceutical Negative Results, (2022) 3052-3071.

V. Kieuvongngam, B. Tan, Y. Niu, (2020) Automatic Text Summarization of COVID-19 Medical Research Articles using BERT and GPT-2. arXiv preprint arXiv:2006.01997.

M.M. Amin, R. Mao, E. Cambria, B.W. Schuller, A wide evaluation of ChatGPT on affective computing tasks. IEEE Transactions on Affective Computing, IEEE, 15(4), (2024) 2204 – 2212. https://doi.org/10.1109/TAFFC.2024.3419593

K. Kheiri, H. Karimi, (2023) Sentimentgpt: Exploiting gpt for advanced sentiment analysis and its departure from current machine learning. arXiv preprint.

J. Kocoń, I. Cichecki, O. Kaszyca, M. Kochanek, D. Szydło, J. Baran, M. Gruza , A. Janz , K. Kanclerz , A. Kocoń , B. Koptyra , W. Mieleszczenko-Kowszewicz , P. Miłkowski , M. Oleksy , M. Piasecki , Ł. Radliński , K. Wojtasik , S. Woźniak, P. Kazienko, ChatGPT: Jack of all trades, master of none. Information Fusion, 99, (2023)101861. https://doi.org/10.1016/j.inffus.2023.101861

M.U. Aytekin, O. Ayhan Erdem, Generative Pre-trained Transformer (GPT) Models for Irony Detection and Classification. 4th International Informatics and Software Engineering Conference (IISEC), IEEE, Turkiye. https://doi.org/10.1109/IISEC59749.2023.10391005

F.M. Plaza-Del-Arco, J. Collado-Montañez, L.A. Ureña-López, M.T. Martín-Valdivia, Empathy and Distress Prediction using Transformer Multi-output Regression and Emotion Analysis with an Ensemble of Supervised and Zero-Shot Learning Models. Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, Association for Computational Linguistics, (2022) 239–244. https://doi.org/10.18653/v1/2022.wassa-1.23

I. Ameer, N. Bölücü, M.H.F. Siddiqui, B. Can, G. Sidorov, A. Gelbukh, Multi-label emotion classification in texts using transfer learning. Expert Systems with Applications, 213, (2023) 118534. https://doi.org/10.1016/j.eswa.2022.118534

A. Bello, S.C. Ng, M.F. Leung, A BERT Framework to Sentiment Analysis of Tweets. Sensors, 23(1), (2023) 506. https://doi.org/10.3390/s23010506

M.M. Imran, (2024) Emotion Classification in Software Engineering Texts: A Comparative Analysis of Pre-trained Transformers Language Models. NLBSE '24: Proceedings of the Third ACM/IEEE International Workshop on NL-based Software Engineering, 73 – 80. https://doi.org/10.1145/3643787.3648034

L. Cheng, Q. Shao, C. Zhao, S. Bi, G.A. Levow, TEII: Think, Explain, Interact and Iterate with Large Language Models to Solve Cross-lingual Emotion Detection. Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, Association for Computational Linguistics, (2024) 495–504. https://doi.org/10.18653/v1/2024.wassa-1.49

N. Wan, S. Au, E. Ubale, D. Krogh, UCSC NLP at SemEval-2024 Task 10: Emotion Discovery and Reasoning its Flip in Conversation (EDiReF). Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), Association for Computational Linguistics, (2024) 1492–1497. https://doi.org/10.18653/v1/2024.semeval-1.214

G. Haralabopoulos, I. Anagnostopoulos, D. McAuley, Ensemble Deep Learning for Multilabel Binary Classification of User-Generated Content. Algorithms, 13(4), (2020) 83. https://doi.org/10.3390/a13040083

S.G. Tesfagergish, J. Kapočiūtė-Dzikienė, R. Damaševičius, Zero-Shot Emotion Detection for Semi-Supervised Sentiment Analysis Using Sentence Transformers and Ensemble Learning. Applied Science, 12(17), (2022) 8662. https://doi.org/10.3390/app12178662

A. Nedilko, Y. Chu, Team Bias Busters at WASSA 2023 Empathy, Emotion and Personality Shared Task: Emotion Detection with Generative Pretrained Transformers. Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, Stroudsburg, Association for Computational Linguistics, (2023) 569–573. https://doi.org/10.18653/v1/2023.wassa-1.53

M. Alshehri, A. Alamri, A.I. Cristea, C.D. Stewart, Towards Designing Profitable Courses: Predicting Student Purchasing Behaviour in MOOCs. International Journal of Artificial Intelligence in Education, 31(2), (2021) 215–233. https://doi.org/10.1007/s40593-021-00246-2

S.M. Mohammad, F. Bravo-Marquez, E. van der Goot, WASSA-2017 shared task on emotion intensity. Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Association for Computational Linguistics, (2017) 34–49. https://doi.org/10.18653/v1/W17-5205

Wan, J., & Woźniak, M. (2024). A Sentiment Analysis Method for Big Social Online Multimodal Comments Based on Pre-trained Models. Mobile Networks and Applications, 1-14. https://doi.org/10.1007/s11036-024-02303-1

A.N. Tak, J. Gratch, (2023) Is GPT a Computational Model of Emotion?. International Conference on Affective Computing and Intelligent Interaction (ACII), IEEE, USA. https://doi.org/10.1109/ACII59096.2023.103881 19

J.K. Leung, I. Griva, W.G. Kennedy, J.M. Kinser, S. Park, S.Y. Lee, (2023) The Application of Affective Measures in Text-based Emotion Aware Recommender Systems. arXiv Prepr. https://doi.org/10.5220/0012143900003541

S. Stajner, R. Klinger, Emotion Analysis from Texts. Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts, Stroudsburg, Association for Computational Linguistics, (2023) 7–12. https://doi.org/10.18653/v1/2023.eacl-tutorials.2

M.H. Tuama, W.M. Mashloosh, H.M. Albehadili, M. Alazzawi, M.A. Al-shareeda, Beyond Polarity: The Potential Applications and Impacts of Sentiment Analysis and Emotion Detection. AlKadhum J. Sci., 1(2), (2023) 44–51. https://doi.org/10.61710/akjs.v1i2.51

K. Arjun Raj, M. Afthab Aslam, S. Sreenivasan Panatte, A.K Das, M. Mohyiddeen, Advancements in Emotion Detection: A Comprehensive Review of Text and Audio-Based Approaches. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 12(3), 2875–2879. https://doi.org/10.22214/ijraset.2024.59451

S. M. Mohammad, Ethics Sheet for Automatic Emotion Recognition and Sentiment Analysis. Computational Linguistics, 48(2), (2022) 239–278. https://doi.org/10.1162/coli_a_00433

Z. Chen, Y. Cao, H. Yao, X. Lu, X. Peng, H. Mei, X. Liu, Emoji-powered sentiment and emotion detection from software developers’ communication data. ACM Transactions on Software Engineering and Methodology (TOSEM), 30(2), (2021) 1-48. https://doi.org/10.1145/3424308

H. Yu, C. Miao, C. Leung, T.J. White, Towards AI-powered personalization in MOOC learning. npj Science of Learning, 2(1), (2017) 1–5. https://doi.org/10.1038/s41539-017-0016-3

K. Kheiri, H. Karimi, (2023) Sentimentgpt: Exploiting gpt for advanced sentiment analysis and its departure from current machine learning. arXiv preprint.

T. Sharma, M. Diwakar, P. Singh, S. Lamba, P. Kumar, K. Joshi, Emotion Analysis for predicting the emotion labels using Machine Learning approaches. IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, India. https://doi.org/10.1109/UPCON52273.2021.9667562

J.L. Wu, W.Y. Chung, Sentiment-based masked language modeling for improving sentence-level valence–arousal prediction. Applied Intelligence, 52(14), (2022) 16353–16369. https://doi.org/10.1007/s10489-022-03384-9

A. Yadav, A. Gupta, An emotion-driven, transformer-based network for multimodal fake news detection. International Journal of Multimedia Information Retrieval, 13(1), (2024) 7. https://doi.org/10.1007/s13735-023-00315-3

Downloads

Published

2025-03-21

How to Cite

1.
Pattun G, Kumar P. Feature Engineering Trends in Text-Based Affective Computing: Rules to Advance Deep Learning Models. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Mar. 21 [cited 2025 Sep. 11];7(2):87-107. Available from: https://asianrepo.org/index.php/irjmt/article/view/125