Enhancing Glaucoma Detection in Fundus Images: A ResNet based Segmentation and Advanced ML Algorithms with Duck Pack Optimizer
DOI:
https://doi.org/10.54392/irjmt2529Keywords:
Glaucoma Detection, Resnet Based Segmentation, Duck Pack Optimizer, Catboost, Lightgbm, Xgboost, Fundus ImagesAbstract
Untreated glaucoma, a chronic eye illness, can cause irreversible vision loss if not caught early. The condition begins with abnormalities in the eye's drainage flow, leading to a rise in intraocular pressure. As the disease progresses, the optic nerve head deteriorates, resulting in vision loss. Ophthalmologists need extensive training and expertise to interpret findings accurately during medical follow-ups to examine the retina. To address this challenge, deep learning-based algorithms have been developed to screen for and diagnose glaucoma using images of the optic nerve, retinal structures, and retinal fundus. This research explores the use of classification and segmentation algorithms based on ResNet to identify glaucoma in fundus images. We fine-tuned the classifier using the DuckPack optimizer and employed XGBoost, LightGBM, and CatBoost algorithms for classification. The results were promising. The segmentation model based on ResNet effectively extracted features, aiding the classification models in accurately identifying glaucoma. All three algorithms performed admirably, though further fine-tuning is needed to determine the best one. Enhancing the model's performance was straightforward after using the DuckPack optimizer for fine-tuning. This study highlights the promising applications of deep learning and sophisticated machine learning algorithms in glaucoma detection. Its findings could inform the development of future diagnostic tools.
References
L.J. Coan, B.M. Williams, V.K. Adithya, S. Upadhyaya, A. Alkafri, S. Czanner, R. Enkatesh, C.E. Willoughby, S. Kavitha, Czanner, G. Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Survey of Ophthalmology, 68(1), (2023) 17-41. https://doi.org/10.1016/j.survophthal.2022.08.005
T. Shyamalee, D. Meedeniya, Glaucoma detection with retinal fundus images using segmentation and classification. Machine Intelligence Research, 19(6), (2022) 563-580. https://doi.org/10.1007/s11633-022-1354-z
M.J. Zedan, M.A. Zulkifley, A.A. Ibrahim, A.M. Moubark, N.A.M. Kamari, S.R. Abdani, Automated glaucoma screening and diagnosis based on retinal fundus images using deep learning approaches: A comprehensive review. Diagnostics, 13(13), (2023) 2180. https://doi.org/10.3390/diagnostics13132180
C.P. Bragança, J.M. Torres, C.P.D.A. Soares, L.O. Macedo, Detection of glaucoma on fundus images using deep learning on a new image set obtained with a smartphone and handheld ophthalmoscope. Healthcare, 10(12), (2022) 2345. https://doi.org/10.3390/healthcare10122345
S. Akbar, S.A. Hassan, A. Shoukat, J. Alyami, S.A. Bahaj, Detection of microscopic glaucoma through fundus images using deep transfer learning approach. Microscopy Research and Technique, 85(6), (2022) 2259-2276. https://doi.org/10.1002/jemt.24083
L. Pascal, O.J. Perdomo, X. Bost, B. Huet, S. Otálora, M.A. Zuluaga, Multi-task deep learning for glaucoma detection from color fundus images. Scientific Reports, 12(1), (2022) 12361. https://doi.org/10.1038/s41598-022-16262-8
M.S. Guru Prasad, H.N. Naveen Kumar, K. Raju, D.K. Santhosh Kumar, S. Chandrappa, Glaucoma detection using clustering and segmentation of the optic disc region from retinal fundus images. SN Computer Science, 4(2), (2023) 192. https://doi.org/10.1007/s42979-022-01592-1
A. Neto, J. Camara, A. Cunha, Evaluations of deep learning approaches for glaucoma screening using retinal images from mobile devices. Sensors, 22(4), (2022) 1449. https://doi.org/10.3390/s22041449
S.I. Khan, S.B. Choubey, A. Choubey, A. Bhatt, P.V. Naishadhkumar, M.M. Basha, Automated glaucoma detection from fundus images using wavelet-based denoising and machine learning. Concurrent Engineering, 30(1), (2022) 103-115. https://doi.org/10.1177/1063293X211026620
R. Hemelings, B. Elen, A.K. Schuster, M.B. Blaschko, J. Barbosa-Breda, P. Hujanen, A. Junglas, S. Nickels, A. White, N. Pfeiffer, P. Mitchell, P. De Boever, A. Tuulonen, I. Stalmans, A generalizable deep learning regression model for automated glaucoma screening from fundus images. NPJ digital medicine, 6(1), (2023) 112. https://doi.org/10.1038/s41746-023-00857-0
B. Gunapriya, T. Rajesh, A. Thirumalraj, B. Manjunatha, LW-CNN-based extraction with optimized encoder-decoder model for detection of diabetic retinopathy. Journal of Autonomous Intelligence, 7(3), (2023) 1095. https://doi.org/10.32629/jai.v7i3.1095
Y. Mrad, Y. Elloumi, M. Akil, M.H. Bedoui, A fast and accurate method for glaucoma screening from smartphone-captured fundus images. IRBM, 43(4), (2022) 279-289. https://doi.org/10.1016/j.irbm.2021.06.004
P. Elangovan, M.K. Nath, En‐ConvNet: A novel approach for glaucoma detection from color fundus images using ensemble of deep convolutional neural networks. International Journal of Imaging Systems and Technology, 32(6), (2022) 2034-2048. https://doi.org/10.1002/ima.22761
L.K. Singh, M. Khanna, S. Thawkar, R. Singh, Collaboration of features optimization techniques for the effective diagnosis of glaucoma in retinal fundus images. Advances in Engineering Software, 173, (2022) 103283. https://doi.org/10.1016/j.advengsoft.2022.103283
S. Joshi, B. Partibane, W.A. Hatamleh, H. Tarazi, C.S. Yadav, D. Krah, Glaucoma detection using image processing and supervised learning for classification. Journal of Healthcare Engineering, (2022). https://doi.org/10.1155/2022/2988262
R.K. Patel, M. Kashyap, Automated screening of glaucoma stages from retinal fundus images using BPS and LBP based GLCM features. International Journal of Imaging Systems and Technology, 33(1), (2023) 246-261. https://doi.org/10.1002/ima.22797
A. Panahi, R. Askari Moghadam, B. Tarvirdizadeh, K. Madani, Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection. Evolutionary Intelligence, 17(2), (2024) 1023-1034. https://doi.org/10.1007/s12065-022-00775-2
B. Chuter, J. Huynh, C. Bowd, E. Walker, J. Rezapour, N. Brye, A. Belghith, M.A. Fazio, C. A. Girkin, G.D. Moraes, J. M. Liebmann, R.N. Weinreb, L.M. Zangwill, M. Christopher, Deep learning identifies high-quality fundus photographs and increases accuracy in automated primary open angle glaucoma detection. Translational Vision Science & Technology, 13(1), (2024) 23-23. https://doi.org/10.1167/tvst.13.1.23
S.K. Sharma, D. Muduli, R. Priyadarshini, R.R. Kumar, A. Kumar, J. Pradhan, An evolutionary supply chain management service model based on deep learning features for automated glaucoma detection using fundus images. Engineering Applications of Artificial Intelligence, 128, (2024) 107449. https://doi.org/10.1016/j.engappai.2023.107449
Y. Madadi, H. Abu-Serhan, S. Yousefi, Domain Adaptation-Based deep learning model for forecasting and diagnosis of glaucoma disease. Biomedical Signal Processing and Control, 92, (2024) 106061. https://doi.org/10.1016/j.bspc.2024.106061
X.R. Gao, F. Wu, P.T. Yuhas, R.K. Rasel, M. Chiariglione, Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection. Scientific Reports, 14(1), (2024) 4494. https://doi.org/10.1038/s41598-024-55056-y
I.A. Kiyani, T. Shehryar, S. Khalid, U. Jamil, A. Muzaffar Syed, Deep learning-based Glaucoma Network Classification (GNC) using retinal images. International Journal of Imaging Systems and Technology, 34(2), (2024) e23003. https://doi.org/10.1002/ima.23003
D. Kavitha, L.F. Raj, S. Kautish, A.S. Almazyad, K.M. Sallam, A.W. Mohamed, Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning. CMES-Computer Modeling in Engineering & Sciences, 139(1), (2024) 801-816. https://doi.org/10.32604/cmes.2023.030902
A. Raza, S. Adnan, M. Ishaq, H. S. Kim, R.A. Naqvi, S.W. Lee, Assisting glaucoma screening process using feature excitation and information aggregation techniques in retinal fundus images. Mathematics, 11(2), (2023) 257. https://doi.org/10.3390/math11020257
S. Wang, L. Yu, X. Yang, C.W. Fu, P.A. Heng, Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Transactions on Medical Imaging, 38(11), (2019) 2485-2495. https://doi.org/10.1109/TMI.2019.2899910
A. Thirumalraj, R. Chandrashekar, B. Gunapriya, P. Kavin Balasubramanian, (2024). NMRA-Facilitated Optimized Deep Learning Framework: A Case Study on IoT-Enabled Waste Management in Smart Cities. Developments towards Next Generation Intelligent Systems for Sustainable Development, 247-268. https://doi.org/10.4018/979-8-3693-5643-2.ch010
Understanding ResNet50 Architecture. Available online: https://iq.opengenus.org/resnet50-architecture/ (accessed on 20 July 2023).
S.K. Shetty, A.P. Patil, Duck pack optimization with deep transfer learning-enabled Oral squamous cell carcinoma classification on histopathological images. International Journal of Grid and High Performance Computing (IJGHPC), 15(2), (2023) 1-21. https://doi.org/10.4018/IJGHPC.320474
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Chinthakunta Manjunath, Archana Sasi, Smitha Chowdary Ch, Sharon Roji Priya C, Raveendra Naick B, Harshini Macherla, Kranthi Kumar Lella (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.