Antimicrobial activity of Cobalt doped Cerium Oxide (Co-CeO2) nanoparticles against selected food pathogens

Authors

  • Kumaran C Department of Physics, Sri Akilandeswari Women’s College, Wandiwash-604408, Tamil Nadu, India Author
  • Baskaran I Department of Physics, Arignar Anna Government Arts College, Cheyyar-604407, Tamil Nadu, India Author
  • Vanmathi Selvi K Department of Microbiology, Sri Akilandeswari Women’s College, Wandiwash-604408, Tamil Nadu, India Author
  • Senthamil Selvi C Department of Physics, S. A. Engineering College, Chennai-600077, Tamil Nadu, India Author
  • Rajkumar P PG Department of Physics, King Nandhivarman College of Arts and Science, Thellar-604406, Tamil Nadu, India, Affiliated to Thiruvalluvar University, Serkkadu, Vellore-632115, Tamil Nadu, India Author https://orcid.org/0000-0003-1013-8786
  • Selvaraj S Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai-602105, Tamil Nadu, India Author https://orcid.org/0000-0001-5252-3792

DOI:

https://doi.org/10.54392/irjmt2344

Keywords:

Foodborne pathogens, Cobalt doped cerium oxide, Antibacterial activity, Spherical Nanoparticles

Abstract

This present work is to investigate the antibacterial activity of CeOnanoparticles on five foodborne pathogens. Low-temperature solid-state reactions were used to create co-doped CeOnanoparticles (Co-CeONPs). In the current work, the impact of Co-doping on polycrystalline CeOsamples synthesized using the co-precipitation method at room temperature for Co-doping concentrations of 0.5%, 1%, 3%, and 5% is discussed. Rietveld refinement of the X-ray diffraction patterns confirms that the Co-doped CeO2 samples have a face-centred cubic structure. This shows that the Co ions have been successfully integrated into the CeO2 lattice. Also, the UV-Vis-NIR absorption spectra confirm that redshifts do happen in the Co-doped CeOsamples, which shows that the band gap energy decreases as the number of Co ions grows. In an antibacterial test against five pathogenic microbes, S. aureus, M. luteus, Enterobacter aerogenes, S. typhi, and Pseudomonas aeruginosa, Co-doped cerium oxide nanoparticles significantly slowed the growth of all five pathogens, both in liquid and solid growth conditions. These results show that Co-doped CeO2 nanoparticles have strong antibacterial properties against foodborne pathogens. This suggests that they could be used as promising bionanomaterials for in vivo therapeutic uses.

References

M. Ghiasi, A. Malekzadeh, Synthesis, characterization and photocatalytic properties of lanthanum oxy-carbonate, lanthanum oxide and lanthanum hydroxide nanoparticles, Superlattices and Microstructures, 77 (2015) 295-304. https://doi.org/10.1016/j.spmi.2014.09.027

K.C. Taylor. J.R. Anderson, M. Boudart (Eds.), (1984) Catalysis Science and Technology, Springer-Verlag, Berlin, 5 120-123.

Commission Recommendation on the definition of nanomaterial (Text with EEA relevance)(2011/696/EU) Journal of the European Union (2011). https://eur-lex.europa.eu/eli/reco/2011/696/oj

A. Arumugam, C. Karthikeyan, A.S. Haja Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties, Materials Science and Engineering: C, 49 (2015) 408-415. https://doi.org/10.1016/j.msec.2015.01.042

M.A. Dar, R. Gul, P. Karuppiah, N.A. Al-Dhabi, A.A. Alfadda, Antibacterial Activity of Cerium Oxide Nanoparticles against ESKAPE Pathogens, Crystals, 12(2) 2022 179. https://doi.org/10.3390/cryst12020179

J. Raczkowska, Y. Stetsyshyn, K. Awsiuk, M. Brzychczy-Włoch, T. Gosiewski, B. Jany, O. Lishchynskyi, Y. Shymborska, S. Nastyshyn, A. Bernasik, H. Ohar, F. Krok, D. Ochońska, A. Kostruba, A. Budkowski, “Command” surfaces with thermo-switchable antibacterial, Materials Science and Engineering: C, 103 (2019) 109806. https://doi.org/10.1016/j.msec.2019.109806

S. Atiq, S.A. Siddiqi, F. Abbas, M. Saleem, S.M. Ramay, Carriers‐assisted Enhanced Ferromagnetism in Al‐doped ZnMnO Nano‐crystallites, Chinese Journal of Chemical Physics, 26 (2013) 457-461. https://doi.org/10.1063/1674-0068/26/04/457-461

G. Killivalavan, B. Sathyaseelan, G. Kavitha, I. Baskarann, K. Senthilnathan, D. Sivakumar, N. Karthikeyan, E. Manikandan, M. Maaza, Cobalt Metal ion Doped Cerium Oxide (CoCeO2) Nanoparticles Effect Enhanced Photocatalytic Activity, MRS Advances, 5 (2020) 2503–2515 https://doi.org/10.1557/adv.2020.296

H.A. Alshaikhi, A.M. Asiri, K.A. Alamry, H.M. Marwani, S.Y. Alfifi, S.B. Khan, Copper Nanoparticles Decorated Alginate/Cobalt-Doped Cerium Oxide Composite Beads for Catalytic Reduction and Photodegradation of Organic Dyes, Polymers, 14(20) (2022) 4458. https://doi.org/10.3390/polym14204458

M. Darroudi, M. Sarani, R.K. Oskuee, A.K. Zak, H.A. Hosseini, L. Gholami, Green synthesis and evaluation of metabolic activity of starch mediated nanoceria, Ceramics International, 40(1) B (2014) 2041-2045. https://doi.org/10.1016/j.ceramint.2013.07.116

P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, H.B. Premkumar, MgO:Eu3+ red nanophosphor: Low temperature synthesis and photoluminescence properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121 (2014) 46-52. https://doi.org/10.1016/j.saa.2013.10.060

N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, Effect of different fuels on structural, thermo and photoluminescent properties of Gd2O3 nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96 (2012) 532-540. https://doi.org/10.1016/j.saa.2012.04.067

E-I Negishi, G. Wang, H. Rao, Z. Xu, Alkyne Elementometalation−Pd-Catalyzed Cross-Coupling Toward Synthesis of All Conceivable Types of Acyclic Alkenes in High Yields, Efficiently, Selectively, Economically, and Safely: “Green” Way, The Journal of Organic Chemistry, 75(10) (2010) 3151-3182. https://doi.org/10.1021/jo1003218

J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Applied Physics Letters, 84(8) (2004) 1332–1334. https://doi.org/10.1063/1.1650041

M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li,On the origin of ferromagnetism in CeO2 nanocubes, Applied Physics Letters, 93 (2008) 062505. https://doi.org/10.1063/1.2972118

S. Atiq, S.A. Siddiqi, F. Abbas, M. Saleem, S.M. Ramay, Carrier-assisted enhanced ferromagnetism in Al-doped ZnMnO Nano-crystallites, Chinese Journal of Chemical Physics, 26(2013) 457- 461. https://doi.org/10.1063/1674-0068/26/04/457-461

S. Kumar, Y.J. Kim, B.H. Koo, H. Choi, C.G. Lee, Structural and Magnetic Properties of Co Doped CeO2 Nano-Particles, IEEE Transactions on Magnetics, 45(6) (2009) 2439-2441. https://doi.org/10.1109/TMAG.2009.2018602

V. Fernandes, J.J. Klein, N. Mattoso, D.H. Mosca, E. Silveira, E. Ribeiro, W.H. Schreiner, J. Varalda, A.J.A. de Oliveira, Room temperature ferromagnetism in Co-doped CeO2films on Si(001) Physical Review B, 75(2007) 121304-121309. https://doi.org/10.1103/PhysRevB.75.121304

L.M. Wagner, M.K. Danks, New therapeutic targets for the treatment of high-risk neuroblastoma, Journal of Cellular Biochemistry, 107(2009) 46-57. https://doi.org/10.1002/jcb.22094

M. Volmer, J. Neamtu, Magnetic field sensors based on Permalloy multilayers and nanogranular films, Journal of Magnetism and Magnetic Materials, 316(2) (2014) e265-e268. https://doi.org/10.1016/j.jmmm.2007.02.115

A. Lateef, S.M. Oladejo, P.O. Akinola, D.A. Aina, L.S. Beukes, B.I. Folarin, E.B. Gueguim-Kana, Facile synthesis of silver nanoparticles using leaf extract of Hyptis suaveolens (L.) Poit for environmental and biomedical applications, IOP Conference Series: Materials Science and Engineering, 805 (2020) 012042. https://doi.org/10.1088/1757-899X/805/1/012042

P. Kanmani, S.T.Lim, Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens, Process Biochemistry, 48(7) (2013) 1099-1106. https://doi.org/10.1016/j.procbio.2013.05.011

S. Malathi, K. Jagathy, A. Ram Kumar, S. Selvaraj, An In Vivo Synergistic Research on the Assessment of the Phytocompound Capped Silver Nanoparticles from Raphanus sativus Leaf Extract and Curcuma longa Against UTI-Causing E.coli., Physical Chemistry Research, 10(4) (2022) 581-588.

M. Mani, R. Harikrishnan, P. Purushothaman, S. Pavithra, P. Rajkumar, S. Kumaresan, D.A. Al Farraj, M.S. Elshikh, B.Balasubramanian, K. Kaviyarasu, Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity, Environmental Research, 202 (2021) 111627. https://doi.org/10.1016/j.envres.2021.111627

P. Maleki, F. Nemati, A. Gholoobi, A. Hashemzadeh, Z. Sabouri, M. Darroudi, Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity, Inorganic Chemistry Communications, 131 (2021) 107682. https://doi.org/10.1016/j.inoche.2021.108762

I.A. Farias, C.C. Santos, F.C. Sampaio, Antimicrobial Activity of Cerium Oxide Nanoparticles on Opportunistic Microorganisms: A Systematic Review, BioMed Research International, 1923606 (2018) 1-14. https://doi.org/10.1155/2018/1923606

R. Suresh, A. Yogeshwaran, P. Logababu, P.S. Sharath, G. Aakash, V. Pugazhendhi, Empowerment the antibacterial activity of Silver Oxide nanoparticles using Woodfordia Fruticosa flower extract, International Research Journal of Multidisciplinary Technovation, 5(4) (2023) 1-11. https://doi.org/10.54392/irjmt2341

H.H. Lara, N.V. Ayala-Núñez, L.C.I. Turrent, C.R. Padilla, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria, World Journal of Microbiology and Biotechnology, 26 (2010) 615–621. https://doi.org/10.1007/s11274-009-0211-3

I. Sondi, O. Siiman, E. Matijević, Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent, Journal of Colloid and Interface Science, 275(2) (2004) 503-507. https://doi.org/10.1016/j.jcis.2004.02.005

M.P. Nikolova, M.S. Chavali, Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics. 2020; 5(2):27. https://doi.org/10.3390/biomimetics5020027

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. https://clsi.org/media/3481/m100ed30_sample.pdf

H.A. Hemeg, Nanomaterials for alternative antibacterial therapy, International Journal of Nanomedicine, 12 (2017) 8211–8225. https://doi.org/10.2147/IJN.S132163

M. Mani, M.K. Okla, S. Selvaraj, A. Ram Kumar, S. Kumaresan, A. Muthukumaran, K. Kaviyarasu, M.A. El-Tayeb, Y.B. Elbadawi, K.S. Almaary, B.M.A. Almunqedhi, A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF-7 cellline, Environmental Research, 198 (2021) 111199. https://doi.org/10.1016/j.envres.2021.111199

Downloads

Published

2023-07-26

How to Cite

C, K. (2023) “Antimicrobial activity of Cobalt doped Cerium Oxide (Co-CeO2) nanoparticles against selected food pathogens”, International Research Journal of Multidisciplinary Technovation, 5(4), pp. 27–36. doi:10.54392/irjmt2344.