Bio-efficacy of Polyethylene Glycol-coated Selenium Nanocomposite Synthesised using Cocos nucifera Haustorium against HepG2 Cell Line
DOI:
https://doi.org/10.54392/irjmt25213Keywords:
Haustorium, Sodium selenite, Polyethylene glycol, Anticancer, Bio-compatibilityAbstract
The selenium-based nanoparticles (SeNP) are prepared by the amalgamation of Cocos nucifera haustorium (CNH) with sodium selenite. Further conjugating the synthesised CNH-SeNP with polyethylene glycol (PEG) to design haustorium-based selenium nanocomposite (CNH-SeNC). The work involves characterising and studying their bio-potency. Maximum absorption in UV-visible spectrum was at 315 nm and 305 nm for CNH-SeNP and CNH-SeNC. FT-IR affirms the involvement of functional groups of haustorium in the fabrication of CHH-SeNP and CNH-SeNC. SEM result conveys the spherical structure of the CNH-SeNP and the elongated oval shape of CNH-SeNC. EDX analysed the elemental proportion of CNH-SeNP and CNH-SeNC. X-ray diffraction pattern presents the amorphous form of CNH-SeNP with increased crystallisation in CNH-SeNC than that of CNH-SeNP. Regarding their antimicrobial activity, not much significant effect is seen. CNH-SeNP and CNH-SeNC comprised excellent antioxidant activity inferred by DPPH, ABTS, and H2O2 assays with the highest inhibition percentage of 84.67 ± 0.88 % and 86.24 ± 1.00 % through ABTS assays for CNH-SeNP and CNH-SeNC at 50 µg/mL. Egg albumin denaturation and HRBC assays showed potent anti-inflammatory properties. In HRBC, the inhibition of inflammation was equal to that of diclofenac sodium (positive control) 88.30 ± 0.66 %, followed by CNH-SeNC (87.77 ± 0.87 %) and CNH-SeNP (86.13 ± 0.83 %). Biocompatibility through brine shrimp lethality assay revealed that no toxicity was seen at low concentrations (10 µg/mL). Initially, mild toxicity was seen at 48 h for higher dosages (20 µg/mL) with viability 93.33±5.77% and 96.67±5.77% for CNH-SeNP and CNH-SeNC. The anticancer effect of CNH-SeNP and CNH-SeNC exhibited tremendous control of growth against HepG2 cells without affecting the normal cells with IC50 values of 31.11 µg/mL and 24.41 µg/mL, respectively. Therefore, the study's outcome presents the advantages of green synthesis from Cocos nucifera haustorium and its conjugation with PEG providing their efficient pharmacological applications.
References
S. Khan, S. Mansoor, Z. Rafi, B. Kumari, A. Shoaib, M. Saeed, S. Alshehri,, M.M. Ghoneim, M. Rahamathulla, U. Hani, F. Shakeel, A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids, 348, (2022). https://doi.org/10.1016/j.molliq.2021.118008
V. Nayak, K.R. Singh, A.K. Singh, R.P. Singh, Potentialities of Se NPs in biomedical science. New Journal of Chemistry, 45(6), (2021) 2849-2878. https://doi.org/10.1039/D0NJ05884J
N. Bisht, P. Phalswal, P.K. Khanna, Se NPs: A review on synthesis and biomedical applications. Materials Advances, 3(3), (2022) 1415-1431. https://doi.org/10.1039/D1MA00639H
V. Alagesan, S. Venugopal, Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience, 9, (2019), 105-116. https://doi.org/10.1007/s12668-018-0566-8
M. Govarthanan, Y.S. Seo, K.J. Lee, I.B. Jung, H.J. Ju, J.S. Kim, B.T. Oh, Low-cost and eco-friendly synthesis of silver NPs using coconut (Cocos nucifera) oil cake extract and its antibacterial activity. Artificial cells, nanomedicine, and biotechnology, 44(8), (2016) 1878-1882. https://doi.org/10.3109/21691401.2015.1111230
M.M. Kumari, D. Philip, Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, (2013) 154-160. https://doi.org/10.1016/j.saa.2013.03.076
A.H. Hashem, S.S. Salem, Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology journal, 17(2), (2022) 2100432. https://doi.org/10.1002/biot.202100432
S.K.R. Namasivayam, Eco friendly, green route method for the preparation of poly ethylene glycol (PEG) mediated surface modified iron oxide nanoparticles (PEG‐IONps) with potential biological activities. Environmental Quality Management, 33(4), (2024) https://doi.org/10.1002/tqem.22172
F. Liu, H. Liu, R. Liu, C. Xiao, X. Duan, D.J. McClements, X. Liu, Delivery of sesamol using polyethylene-glycol-functionalised Se NPs in human liver cells in culture. Journal of agricultural and food chemistry, 67(10), (2019) 2991-2998. https://doi.org/10.1021/acs.jafc.8b06924
A. Narayanankutty, J.T. Job, A.M. Kuttithodi, A. Sasidharan, P.B. Benil, V. Ramesh, M.M.E. El-Din, M.F. Elsadek, H. Rizwana, Proximate composition, antioxidant, anti-inflammatory and antidiabetic properties of the haustorium from Coconut (Cocos nucifera L.) and Palmyra palm (Borassus flabellifer L.). Journal of King Saud University-Science, 35(1), (2023) 102404. https://doi.org/10.1016/j.jksus.2022.102404
Y. Zhang, J. Kan, M. Tang, F. Song, N. Li, Y. Zhang, Chemical Composition, Nutritive Value, Volatile Profiles and Antioxidant Activity of Coconut (Cocos nucifera L.) Haustorium with Different Transverse Diameter. Foods, 11(7), (2022) 916. https://doi.org/10.3390/foods11070916
H. Omar, N.S.A. Malek, M.Z. Nurfazianawatie, N.F. Rosman, I. Bunyamin, S. Abdullah, Z. Khusaimi, M. Rusop, N.A. Asli, A review of synthesis graphene oxide from natural carbon-based coconut waste by Hummer's method. Materials Today: Proceedings, 75, (2022) 188-192. https://doi.org/10.1016/j.matpr.2022.11.427
T. Liang, X. Qiu, X. Ye, Y. Liu, Z. Li, B. Tian, D. Yan, Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech, 10, (2020) 1-6. https://doi.org/10.1007/s13205-019-1999-7
C. Santhosh, B. Balasubramanian, P. Vino, M. Viji, C. Rejeeth, S. Kannan, H. Ullah, K.R.R. Rengasamy, M. Daglia, M. Daglia, A. Maruthupandian, Biofabricated selenium nanoparticles mediated from Goniothalamus wightii gains biomedical applications and photocatalytic degrading ability. Journal of King Saud University-Science, 34(8), (2022) 102331. https://doi.org/10.1016/j.jksus.2022.102331
C.O. Ehi-Eromosele, B.I. Ita, E.E.J. Iweala, The effect of polyethylene glycol (PEG) coating on the magneto-structural properties and colloidal stability of CO0. 8Mg0. 2Fe2O4 nanoparticles for potential biomedical applications. Digest Journal of Nanomaterials and Biostructures, 11, (2016) 7-14.
S. Abirami, M. Priyalakshmi, A. Soundariya, A.V. Samrot, S. Saigeetha, R.R. Emilin, S. Dhiva, L. Inbathamizh, Antimicrobial activity, antiproliferative activity, amylase inhibitory activity and phytochemical analysis of ethanol extract of corn (Zea mays L.) silk. Current Research in Green and Sustainable Chemistry, 4, (2021) 100089. https://doi.org/10.1016/j.crgsc.2021.100089
H.U. Hassan, N.I. Raja, F. Abasi, A. Mehmood, R. Qureshi, Z. Manzoor, M. Shahbaz, J. Proćków, Comparative study of antimicrobial and antioxidant potential of olea ferruginea fruit extract and its mediated selenium nanoparticles. Molecules, 27(16), (2022) 5194. https://doi.org/10.3390/molecules27165194
M. Indracanti, S. ChV, T. Sisay, A 96 well-microtiter plate ABTS based assay for estimation of antioxidant activity in green leafy vegetables. Biotechnology International, 12 (2), (2019) 22-29.
H. Sadiq, H. Sadiq, A. Sohail, A. Basit, N. Akhtar, K. Batool, S. Hisaindee, L. Asghar, Assessment of antioxidant activity of pure graphene oxide (GO) and composite V2O5/GO using DPPH radical and H2O2 scavenging assays. Journal of Sol-Gel Science and Technology, 108(3), (2023) 840-849. https://doi.org/10.1007/s10971-023-06231-6
R. Shanmugam, M. Tharani, S.S. Abullais, S.R. Patil, M.I. Karobari, Black seed assisted synthesis, characterisation, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC Complementary Medicine and Therapies, 24(1), (2024) 241. https://doi.org/10.1186/s12906-024-04552-9
S. Sivakumar, M. Subban, R. Chinnasamy, K. Chinnaperumal, I. Nakouti, M.A. El-Sheikh, J.P. Shaik, Green synthesised silver nanoparticles using Andrographis macrobotrys Nees leaf extract and its potential to antibacterial, antioxidant, anti-inflammatory and lung cancer cells cytotoxicity effects. Inorganic Chemistry Communications, 153, (2023) 110787. https://doi.org/10.1016/j.inoche.2023.110787
B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, D.E.J. Nichols, J.L. McLaughlin, Brine shrimp: a convenient general bioassay for active plant constituents. Planta medica, 45(05), (1982) 31-34. http://dx.doi.org/10.1055/s-2007-971236
D. Gopal, S. Partheeswar, T. Lakshmi, R. Shanmugam, Exploring the Therapeutic Potential: Green Synthesis of Selenium Nanoparticles Using Vaccinium Subg. Oxycoccus for Antioxidant, Anti-Inflammatory, and Cytotoxic Effect. Nanotechnology Perceptions, (2024) 632-648. https://doi.org/10.62441/nano-ntp.v20iS8.53
T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65, (1983) 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
D. Venkatachalapathy, C. Shivamallu, S.K. Prasad, G. Thangaraj Saradha, P. Rudrapathy, R.G. Amachawadi, S.S. Patil, A. Syed, A.M. Elgorban, A.H. Bahkali, S.P. Kollur, K.M. Basalingappa, Assessment of chemopreventive potential of the plant extracts against liver cancer using HepG2 cell line. Molecules, 26(15), (2021) 4593. https://doi.org/10.3390/molecules26154593
M.M.R. Sreelekshmi, K.P. Sayoojya, A.P. Souparnika, K. Sowparnika, T.S. Pournami, K.R. Sabu, B.R. Rajesh, R.P. Chandran, Production of coconut sprout wine using Saccharomyces cerevisiae and its physico-chemical analysis. MOJ Food Process Technology, 6(5), (2018) 445-449. https://doi.org/10.15406/mojfpt.2018.06.00203
J.A. Asong, E.K. Frimpong, H.A. Seepe, L. Katata-Seru, S.O. Amoo, A.O. Aremu, Green synthesis of characterised silver nanoparticle using cullen tomentosum and assessment of its antibacterial activity. Antibiotics, 12(2), (2023) 203. https://doi.org/10.3390/antibiotics12020203
M. Smita, M. Bashir, S. Haripriya, Physicochemical and functional properties of peeled and unpeeled coconut haustorium flours. Journal of Food Measurement and Characterization, 13(1), (2019) 61-69. https://doi.org/10.1007/s11694-018-9919-9
R. Kizil, J. Irudayaraj, K. Seetharaman, Characterisation of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of agricultural and food chemistry, 50(14), (2002) 3912-3918. https://doi.org/10.1021/jf011652p
Y. Xia, M. Sun, H. Huang, W.L. Jin, Drug repurposing for cancer therapy. Signal Transduction and Targeted Therapy, 9(1), (2024) 92. https://doi.org/10.1038/s41392-024-01808-1
M. Soni, R. Gayathri, K. Sankaran, V.P. Veeraraghavan, A.P. Francis, Green synthesis of selenium nanoparticles using luffa cylindrica and its biocompatibility studies for potential biomedical applications. Nano, 18(06), (2023) 2350042. https://doi.org/10.1142/S179329202350042X
M. Shahbaz, A. Akram, N.I. Raja, T. Mukhtar, A. Mehak, N. Fatima, M. Ajmal, K. Ali, N. Mustafa, F. Abasi, Antifungal activity of green synthesised selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS One, 18(2), (2023) e0274679. https://doi.org/10.1371/journal.pone.0274679
S.Y. Al-Qaraleh, W.A. Al-Zereini, S.A. Oran, A.Z. Al-Sarayreh, S.E.M. Al-Dalain, Evaluation of the antioxidant activities of green synthesised selenium nanoparticles and their conjugated polyethylene glycol (PEG) form in vivo. OpenNano, 8, (2022) 100109. https://doi.org/10.1016/j.onano.2022.100109
G.B. Alvi, M.S. Iqbal, M.M.S. Ghaith, A. Haseeb, B. Ahmed, M.I. Qadir, Biogenic selenium nanoparticles (SeNPs) from citrus fruit have antibacterial activities. Scientific Reports, 11(1), (2021) 4811. https://doi.org/10.1038/s41598-021-84099-8
L.M. Dos Santos Souza, M. Dibo, J.J.P. Sarmiento, A.B. Seabra, L.P. Medeiros, I.M. Lourenço, R.K.T. Kobayashi, G. Nakazato, Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Current Research in Green and Sustainable Chemistry, 5, (2022) 100303. https://doi.org/10.1016/j.crgsc.2022.100303
D. Cui, C. Yan, J. Miao, X. Zhang, J. Chen, L. Sun, L. Meng, T. Liang, Q. Li, Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Materials Science and Engineering: C, 90, (2018) 104-112. https://doi.org/10.1016/j.msec.2018.04.048
S.S. Salem, M.S.E. Badawy, A.A. Al-Askar, A.A. Arishi, F.M. Elkady, A.H. Hashem, Green biosynthesis of selenium nanoparticles using orange peel waste: Characterisation, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6), (2022) 893. https://doi.org/10.3390/life12060893
L. Gunti, R.S. Dass, N.K. Kalagatur, Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Frontiers in microbiology, 10, (2019) 931. https://doi.org/10.3389/fmicb.2019.00931
G. Tien Nguyen, T.A.N. Truong, N. Duy Dat, T.A.D. Phan, T.H. Bui, Polyethylene Glycol Confined in SiO2–Modified Expanded Graphite as Novel Form–Stable Phase Change Materials for Thermal Energy Storage. ACS omega, 8(41), (2023) 38160-38169. https://doi.org/10.1021/acsomega.3c04311
T. Huang, J.A. Holden, D.E. Heath, N.M. O'Brien-Simpson, A.J. O'Connor, Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 11(31), (2019) 14937-14951. https://doi.org/10.1039/C9NR04424H
A. Buzkova, L. Hochvaldova, R. Vecerova, T. Malina, M. Petr, J. Kaslik, L. Kvitek, M. Kolar, A. Panacek, R. Prucek, Selenium nanoparticles: influence of reduction agents on particle stability and antibacterial activity at biogenic concentrations. Nanoscale, (2025). https://doi.org/10.1039/D4NR05271D
N. Filipovic, D. Usjak, M.T. Milenkovic, K. Zheng, L. Liverani, A.R. Boccaccini, M.M. Stevanovic, Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Frontiers in bioengineering and biotechnology, 8, (2021) 624621. https://doi.org/10.3389/fbioe.2020.624621
A. Rangrazi, H. Bagheri, K. Ghazvini, A. Boruziniat, M. Darroudi, Synthesis and antibacterial activity of colloidal selenium nanoparticles in chitosan solution: a new antibacterial agent. Materials Research Express, 6(12), (2020) 1250h3.
E. Cremonini, E. Zonaro, M. Donini, S. Lampis, M. Boaretti, S. Dusi, P. Melotti, M.M. Lleo, G. Vallini, Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial biotechnology, 9(6), (2016) 758-71. https://doi.org/10.1111/1751-7915.12374
Y. Zhang, Y.J. Roh, S.J. Han, I. Park, H.M. Lee, Y.S. Ok, B.C. Lee, S.R. Lee, Role of selenoproteins in redox regulation of signalling and the antioxidant system: a review. Antioxidants, 9(5), (2020) 383. https://doi.org/10.3390/antiox9050383
W. Chen, H. Cheng, W. Xia, Construction of Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants, 11(2), (2022) 240. https://doi.org/10.3390/antiox11020240
K. Juarez-Moreno, M. Ayala, R. Vazquez-Duhalt, Antioxidant capacity of poly (ethylene glycol) (PEG) as protection mechanism against hydrogen peroxide inactivation of peroxidases. Applied biochemistry and biotechnology, 177, (2015) 1364-1373. https://doi.org/10.1007/s12010-015-1820-y
M.A. El-Ghazaly, N. Fadel, E. Rashed, A. El-Batal, S.A. Kenawy, Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Canadian journal of physiology and pharmacology, 95(2), (2017) 101-110. https://doi.org/10.1139/cjpp-2016-0183
H. Ebaid, J. Al-Tamimi, I. Hassan, M.A. Habila, A.M. Rady, I.M. Alhazza, A.M. Ahmed, Effect of selenium nanoparticles on carbon tetrachloride-induced hepatotoxicity in the Swiss albino rats. Applied Sciences, 11(7), (2021) 3044. https://doi.org/10.3390/app11073044
S.B. Bi, I. Elahi, N. Sardar, O. Ghaffar, H. Ali, R.A. Alsubki, M.S. Iqbal, K.A. Attia, A.M. Abushady, Exploring non-cytotoxic, antioxidant, and anti-inflammatory properties of selenium nanoparticles synthesized from Gymnema sylvestre and Cinnamon cassia extracts for herbal nanomedicine. Microbial Pathogenesis, 192, (2024) 106670. https://doi.org/10.1016/j.micpath.2024.106670
R. Hassanien, A.A. Abed‐Elmageed, D.Z. Husein, Eco‐friendly approach to synthesise selenium nanoparticles: Photocatalytic degradation of sunset yellow azo dye and anticancer activity. Chemistry Select, 4(31), (2019) 9018-9026. https://doi.org/10.1002/slct.201901267
S. Zheng, X. Li, Y. Zhang, Q. Xie, Y.S. Wong, W. Zheng, T. Chen, PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. International journal of nanomedicine, (2012) 3939-3949. https://doi.org/10.2147/ijn.s30940
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Senthamaraikannan Y, Sundaram V, Shanmugam R (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.