Development and Physicochemical Investigation of a p-Anisidine-3,5-Dinitrobenzoic Acid Crystalline Material

Authors

  • Rohini P Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam – 638401, Tamil Nadu, India. Author
  • Siva G Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam – 638401, Tamil Nadu, India. Author
  • Bharathi Kannan R Department of Physics, SRMV College of Arts and Science, Coimbatore – 641020, Tamil Nadu, India. Author

DOI:

https://doi.org/10.54392/irjmt25214

Keywords:

Anisidine, Dinitrobenzoic Acid, Biological Investigations, Crystal Growth

Abstract

A novel crystalline material based on p-anisidine and 3,5-dinitrobenzoic acid (ADNBA) was synthesized using a slow evaporation solution growth technique. Single-crystal X-ray diffraction (SCXRD) confirmed a monoclinic crystal system with the P2₁/c space group. Spectroscopic characterization through FTIR, ¹H-NMR, ¹³C-NMR, and UV-Vis analyses confirmed the formation of a charge-transfer complex, with hydrogen bonding interactions playing a crucial role in molecular stabilization. Thermal analysis (TG-DTA) indicated phase purity and stability up to 70.2°C, with decomposition occurring beyond 228°C. Microhardness testing revealed a soft material with a Meyer’s index of 2.78, and additional tests at higher loads (>100 g) confirmed plastic deformation. Dielectric studies showed a decrease in dielectric constant with increasing frequency, enhancing its suitability for nonlinear optical applications. Density Functional Theory (DFT) calculations using the B3LYP/6-311++G(d,p) method revealed a HOMO-LUMO energy gap of 0.01915 eV, which was compared with the 2.92 eV experimental band gap from Tauc’s plot. Nonlinear optical (NLO) properties were confirmed through hyperpolarizability analysis and Z-scan experiments, demonstrating positive nonlinear refraction and two-photon absorption behavior. Antibacterial studies indicated potent activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, and Pseudomonas aeruginosa, while antifungal tests showed inhibition against Candida albicans, Aspergillus niger, and Aspergillus fumigatus. Mechanistic insights suggested that reactive oxygen species (ROS) generation contributes to the antimicrobial effect. Preliminary cytotoxicity tests on human fibroblast cells showed an IC₅₀ of 250 μg/mL, indicating moderate biocompatibility. The ADNBA complex also demonstrated strong antioxidant potential against DPPH radicals. These findings highlight ADNBA as a promising multifunctional material for nonlinear optical and biomedical applications.

References

P. Gautam, R. Misra, SA. Siddiqui, GD. Sharma, Donor–acceptor–π–acceptor based charge transfer chromophore as electron donors for solution processed small molecule organic bulk heterojunction solar cells. Organic Electronics, 19, (2015) 76–82. https://doi.org/10.1016/j.orgel.2015.01.032

L. Wang, W. Zhu, Organic Donor‐Acceptor systems for photocatalysis. Advanced Science, 11 (2023) 2307227. https://doi.org/10.1002/advs.202307227

IM. Khan, A. Ahmad, M. Oves, Synthesis, characterization, spectrophotometric, structural and antimicrobial studies of the newly charge transfer complex of p-phenylenediamine with π acceptor picric acid. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 77, (2010) 1059–64. https://doi.org/10.1016/j.saa.2010.08.073

M. Hasani, A. Rezaei, Spectrophotometric study of the charge-transfer complexes of iodine with antipyrine in organic solvents. 65, (2006)1093–1097. https://doi.org/10.1016/j.saa.2006.02.009

MMH. Khalil, HA. Mohamed, SM. El-medani, RM. Ramadan, New Group 6 metal carbonyl derivatives of 2- (2 -pyridyl) benzimidazole: synthesis and spectroscopic studies. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 59, (2003) 1341–1347. https://doi.org/10.1016/s1386-1425(02)00330-x

IM. Khan, A. Ahmad, Synthesis, spectrophotometric, structural and thermal studies of the charge transfer complex of p-phenylenediamine, as an electron donor with π acceptor 3, 5-dinitrobenzoic acid. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 76, (2010) 315–321. https://doi.org/10.1016/j.saa.2010.03.005

IM. Khan, A. Ahmad, Synthesis, spectroscopic characterization and structural studies of a new proton transfer (H-bonded) complex of o-phenylenediamine with L -tartaric acid. Journal of Molecular Structure 1050, (2013) 122–127. https://doi.org/10.1016/j.molstruc.2013.07.015

R. Jeyaseelan, W. Liu, J. Zumbusch, LD. Næsborg, Methyl viologen as a catalytic acceptor for electron donor-acceptor photoinduced cyclization reactions. Green Chemistry, 27, (2024) 1969-1973. https://doi.org/10.1039/d4gc05481d

SK. Kodadi, P. Tigulla, Synthesis, Spectroscopic and Computational Studies of CT Complexes of Amino Acids with Iodine as σ Acceptor. J Solution Chem 46, (2017) 1364–1403. https://doi.org/10.1007/s10953-017-0643-6

U. Neupane, RN. Rai, Solid state synthesis of novel charge transfer complex and studies of its crystal structure and optical properties. Journal of Solid State Chemistry, 268, (2018) 67–74. https://doi.org/10.1016/j.jssc.2018.08.029

IM. Khan, A. Ahmad, M. Oves, Synthesis, characterization, spectrophotometric, structural and antimicrobial studies of the newly charge transfer complex of p-phenylenediamine with ␲ acceptor picric acid. SpectrochimActa Part A MolBiomolSpectrosc 77, (2010) 1059–1064. https://doi.org/10.1016/j.saa.2010.08.073

T. Portada, D. Margetić, V. Štrukil, Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives. Molecules, 23 (2018) 3163. https://doi.org/10.3390/molecules23123163

J. Zhu, Z. Yang, Y. Chen, M. Chen, Z. Liu, Y. Cao, J. Zhang, G. Qian, X. Zhou, X. Duan, Mechanistic insights into the active intermediates of 2,6-diaminopyridine dinitration. Chinese Journal of Chemical Engineering, 56, (2022) 160–168. https://doi.org/10.1016/j.cjche.2022.06.024

S. Chantrapromma, A. Usman, HK, Fun, BL. Poh, C. Karalai, Structural and spectroscopic studies of the adducts of quinuclidine and 3,5-dinitrobenzoic acid. Journal of Molecular Structure, 688 (2003) 59–65. https://doi.org/10.1016/j.molstruc.2003.09.003

D. Kumar, A. Saha, AK. Mukherjee, Spectroscopic and thermodynamic study of charge transfer complexes of cloxacillin sodium in aqueous ethanol medium. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 61, (2017) 2017–2022. https://doi.org/10.1016/j.saa.2004.08.001

SA. Mizyed, E. Al-jarrah, D. Marji, M. Ashram, A spectrophotometric study of the charge transfer complexes of [60] fullerene with different tert -butylcalix [4] crowns. 68 (2007) 1274–1277. https://doi.org/10.1016/j.saa.2007.02.004

T. Moumene, E. Habib, B. Haddad, D. Villemin, O. Abbas, B. Khelifa, S. Bresson, Vibrational spectroscopic study of ionic liquids : Comparison between monocationic and dicationicimidazolium ionic liquids. Journal of Molecular Structure, 1065-1066 (2014) 86–92. https://doi.org/10.1016/j.molstruc.2014.02.034

MS Refat, MS, A. Elfalaky, E. Elesh, Spectroscopic and physical measurements on charge-transfer complexes : Interactions between norfloxacin and ciprofloxacin drugs with picric acid and 3, 5-dinitrobenzoic acid acceptors. Journal of Molecular Structure, 990, (2011) 217–226. https://doi.org/10.1016/j.molstruc.2011.01.049

T. Geng, Z. Zhu, X. Wang, H. Xia, Y. Wang, D. Li, Poly{tris[4-(2-Thienyl)phenyl]amine} fluorescent conjugated microporous polymer for selectively sensing picric acid. Sensors and Actuators B Chemical, 244, (2017) 334–43. https://doi.org/10.1016/j.snb.2017.01.005

S. Ravi, R. Sreedharan, KR. Raghi, TKM Kumar, K. Naseema, Linear–nonlinear optical and quantum chemical studies on Quinolinium 3,5-dinitrobenzoate: A novel third order non-linear optical material for optoelectronic applications. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 249 (2020) 119304. https://doi.org/10.1016/j.saa.2020.119304

GM. Sheldrick, (1997) SHELXS-97, Program for the solution of crystal structures, University of Gottingen, Gottingen, Germany.

GM. Sheldrick, Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallographica Section A: Foundations of Crystallography, 46, (1990) 467-473. https://doi.org/10.1107/S0108767390000277

T. Portada, D. Margetić, V. Štrukil. Mechanochemical catalytic transfer hydrogenation of aromatic nitro derivatives. Molecules 23, (2018) 3163. https://doi.org/10.3390/molecules23123163

J. Zhu, Z. Yang, Y. Chen, M. Chen, Z. Liu, Y. Cao, J. Zhang, G. Qian, X. Zhou, X. Duan, Mechanistic insights into the active intermediates of 2,6-diaminopyridine dinitration. Chinese Journal of Chemical Engineering, 56, (2022) 160–168. https://doi.org/10.1016/j.cjche.2022.06.024

CS. Karthik, N. Maithra, AHU. Kumar, JR. Rajabathar, KP. Sukrutha, MK Hema, NK. Lokanath, Exploration of one-dimensional hydrogen bonding organic framework (1D-HOF) and charge transfer dynamics in N’-benzylbenzohydrazide: A comprehensive structural and quantum computational investigation. Journal of Molecular Structure, 1307 (2024) 137845. https://doi.org/10.1016/j.molstruc.2024.137845

R. Takouachet, R. Benali-Cherif, E-E Bendeif, K. Bouchouit, W. Falek, B. Sahraoui, A. Rahmouni, N. Benali-Cherif, Nonlinear optical properties and structural characterization of a series of carboxyanilinium hydrogen selenite hybrids: Synthesis, first-principles calculations and correlation analysis for advanced photonic applications. Inorganic Chemistry Communications, 170 (2024) 113439. https://doi.org/10.1016/j.inoche.2024.113439

JA Fernández, Exploring hydrogen bond in biological molecules. Journal of the Indian Institute of Science, 100 (2019) 135–54. https://doi.org/10.1007/s41745-019-00146-4

A. Choperena, P. Painter, Hydrogen Bonding in Polymers: Effect of Temperature on the OH Stretching Bands of Poly(vinylphenol). Macromolecules,42 (2009) 6159–65. https://doi.org/10.1021/ma900928z

AH. Hameed, G. Ravi, R. Dhanasekaran, P. Ramasamy, Studies on organic indole-3-aldehyde single crystals. Journal of Crystal Growth, 212 (2000) 227-232. https://doi.org/10.1016/S0022-0248(99)00896-9

KK. Bamzai, PN. Kotru, BM. Wanklyn, Investigations on indentation induced hardness and fracture mechanism in flux grown DyAlO3 crystals. Applied Surface Science, 133 (1998) 195-204. https://doi.org/10.1016/S0169-4332(98)00187-1

EM. Onitsch, Uber die mikrohärte der metalle. Microscopia, 2 (1947) 131.

M. Hanneman, Metallurgia Manchu, 1941. Manch, 23:135-140.

ZW. Zhang, Z. Li, Y. Liu, JT. Wang, Path dependency of plastic deformation in crystals: work hardening, crystallographic rotation and dislocation structure evolution. Crystals, 12 (2022) 999. https://doi.org/10.3390/cryst12070999

SA. Meguid, Interatomic Bonds and Defects in Solids. In: Atomistic and Continuum Fracture Mechanics of Solids. Springer, Cham., (2024) 119-131. https://doi.org/10.1007/978-3-031-56085-9_5

MI. Bell, Frequency Dependence of Miller's Rule for Nonlinear Susceptibilities. Physical Review B, 6 (1972) 516. https://doi.org/10.1103/PhysRevB.6.516

C. Zhang, X. He, Q. Lu, High-frequency low-dielectric-loss in linear-backbone-structured polyimides with ester groups and ether bonds. Communication Materials, 5, (2024) 55. https://doi.org/10.1038/s43246-024-00502-7

R. Thirumurugan, S. Priyadharshini, B. Babu, BM Babu, K. Anitha, An efficient phase matching second harmonic generation of 2-amino-4-methylpyridinium quinoline-2-carboxylate (C16H15N3O2) organic single crystal: structural, optical, thermal, and computational investigations. Journal of Molecular Structure, (2025) 141453. https://doi.org/10.1016/j.molstruc.2025.141453

M. Miar, A. Shiroudi, K. Pourshamsian, AR. Oliaey, F. Hatamjafari, Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and itspara-substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45 (2020) 147–158. https://doi.org/10.1177/1747519820932091

P. Senet, Chemical hardnesses of atoms and molecules from frontier orbitals. Chemical Physics Letters, 275 (1997) 527–532. https://doi.org/10.1016/s0009-2614(97)00799-9

H. Tandon, T. Chakraborty, V. Suhag, A New Scale of the Electrophilicity Index Invoking the Force Concept and Its Application in Computing the Internuclear Bond Distance. Journal of Structural Chemistry, 60, (2019) 1725–1734. https://doi.org/10.1134/S0022476619110040

RG. Parr, W. Yang, Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106, (1984) 4049–4050. https://doi.org/10.1021/ja00326a036

DA. Kleinman, Nonlinear dielectric polarization in optical media. Physical Review, 126, (1962) 1977–1979. https://doi.org/10.1103/physrev.126.1977

N. Elleuch, W. Amamou, AB. Ahmed, Y Abid, H Feki, Vibrational spectroscopic study, charge transfer interaction and nonlinear optical properties of l-asparaginium picrate: A density functional theoretical approach. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 128, (2014) 781–789. https://doi.org/10.1016/j.saa.2014.02.159

M. Sheik-Bahae, AA. Said, EW. Van Stryland, High-sensitivity, single-beam n_2 measurements, Optics Letters, 14, (1989) 955. https://doi.org/10.1364/ol.14.000955

M. Sheik-Bahae, AA. Said, TH. Wei, DJ. Hagan, EW. Van Stryland, Sensitive measurement of optical nonlinearities using single beam. IEEE Journal of Quantum Electronics, 26, (1990) 760-769. https://doi.org/10.1109/3.53394

G. Siva, R. Bharathikannan, B. Mohanbabu, Synthesis, characterization and biological studies of a new adduct single crystal of hexamethylenetetramine:benzilic acid. Materials Today Proceedings, 33 (2020) 4171–6. https://doi.org/10.1016/j.matpr.2020.07.058

Downloads

Published

2025-03-30

How to Cite

1.
P R, G S, R BK. Development and Physicochemical Investigation of a p-Anisidine-3,5-Dinitrobenzoic Acid Crystalline Material. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Mar. 30 [cited 2025 Oct. 3];7(2):184-97. Available from: https://asianrepo.org/index.php/irjmt/article/view/131