Yttrium Doped MoO3 Nanoplates as Photocatalysts for Enhanced Removal of Organic dyes in Aqueous Solutions

Authors

  • Usha Devi T Postgraduate and Research Department of Physics, Nanotechnology Lab, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India Author
  • Senthil Kumar D Department of Physics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India Author
  • Gowtham M Postgraduate and Research Department of Physics, Nanotechnology Lab, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India Author
  • Senthil Kumar Nagarajan Postgraduate and Research Department of Physics, Nanotechnology Lab, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India Author

DOI:

https://doi.org/10.54392/irjmt25217

Keywords:

Yttrium Doped Moo3, Photocatalysis, Methylene Blue, Rhodamine B, Crystal Violet, UV-Visible Light

Abstract

The release of organic dyes into the environment is a significant concern, as they are toxic and carcinogenic, and contribute to water pollution, posing health risks to all living beings. Effective and environmentally friendly approaches such as photocatalysts are essential to deal with organic dyes in industrial wastes. The affordable and environmentally friendly properties of MoO3 make it a superior photocatalyst compared to other materials.  In this study, explores a co-precipitation method was used to synthesize undoped and Yttrium-Doped MoO3 nanoparticles and its analyzed using various characterization techniques. From structural analysis revealed that all the studied samples were exhibited a monoclinic structure. SEM images showed uniform nanoplate like morphology with reduced particle agglomeration at optimal doping levels which indicates that Yttrium doping concentration affects the morphology. The performance of Yttrium doping on MoO3 nanoparticles as efficient photocatalyst was further demonstrated in the degradation of various pollutants such as MB, CV and Rh B under visible light irradiation and it shows well photocatalytic activity during the degradation of Rh B under visible light. It was found that an appropriate amount of Y³⁺ dopant can greatly increase photocatalytic activity and the sample with 7 wt. % of Y³⁺ doping exhibits the highest photocatalytic efficiency at 91.5% for Rhodamine B after 140 min of exposure to visible light. Based on kinetic analyses, the photocatalytic performance of the 7 wt.% Y³⁺ doping MoO3 sample showed four times higher efficient than that of the undoped MoO3. The results highlight how controlled Y³⁺ incorporation can dramatically improve the photocatalytic properties of MoO3, positioning 7 wt.% Y³⁺: MoO₃ as a highly promising material for environmental remediation applications.

References

W.S.A. El-Yazeed, A.I. Ahmed, Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue. Inorganic Chemistry Communications, 105, (2019) 102-111. https://doi.org/10.1016/j.inoche.2019.04.034

M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of industrial and engineering chemistry, 62, (2018) 1-25. https://doi.org/10.1016/j.jiec.2018.01.012

M. M.J. Sadiq, U.S. Shenoy, D.K. Bhat, Synthesis of BaWO4/NRGO–gC3 N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach. Frontiers of Materials Science, 12, (2018) 247-263. https://doi.org/10.1007/s11706-018-0433-0

H.M. Martínez, J. Torres, M.E. Rodríguez-García, L.L. Carreño, Gas sensing properties of nanostructured MoO3 thin films prepared by spray pyrolysis. Physica B: Condensed Matter, 407(16), (2012) 3199-3202. https://doi.org/10.1016/j.physb.2011.12.064

L. Zheng, Y. Xu, D. Jin, Y. Xie, Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chemistry of Materials, 21(23), (2009) 5681-5690. https://doi.org/10.1021/cm9023887

K. Sakaushi, J. Thomas, S. Kaskel, J. Eckert, Aqueous solution process for the synthesis and assembly of nanostructured one-dimensional α-MoO3 electrode materials. Chemistry of Materials, 25(12), (2013) 2557-2563. https://doi.org/10.1021/cm401697z

A.C. Dillon, L.A. Riley, Y.S. Jung, C. Ban, D. Molina, A.H. Mahan, A.S. Cavanagh, S.M. George, S.H. Lee, HWCVD MoO3 nanoparticles and a-Si for next generation Li-ion anodes. Thin Solid Films, 519(14), (2011) 4495-4497. https://doi.org/10.1016/j.tsf.2011.01.337

J. Li, X. H. Liu, Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Materials Letters, 112, (2013) 39-42. https://doi.org/10.1016/j.matlet.2013.08.094

Q. Qu, W.B. Zhang, K. Huang, H.M. Chen, Electronic structure, optical properties and band edges of layered MoO3 a first principles investigation. Computational Materials Science, 130, (2017) 242–248. https://doi.org/10.1016/j.commatsci.2017.01.014

A.V. Avani, E.I. Anila, Recent advances of MoO3 based materials in energy catalysis: Applications in hydrogen evolution and oxygen evolution reactions, International Journal of Hydrogen Energy, 47 (2022) 20475-20493. https://doi.org/10.1016/j.ijhydene.2022.04.252

D. Jiang, W. Wei, F. Li, Y. Li, C. Liu, D. Sun, C. Feng, S. Ruan Xylene gas sensor based on α-MoO3/α-Fe2O3 heterostructure with high response and low operating temperature. RSC Advances, 5, (2015) 39442–39448. https://doi.org/10.1039/C5RA05661F

M. Luo, Y. Liu, J. Hu, H. Liu, J. Li (2012) One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS applied materials & interfaces, 4(3), 1813-1821. https://doi.org/10.1021/am3000903

A.A. Bernardes, C. Radtke, M.D.C.M. Alves, I.M. Baibich, M. Lucchese, J.H.Z. dos Santos, Synthesis and characterization of SiO2–CrO3, SiO2–MoO3, and SiO2–WO3 mixed oxides produced using the non-hydrolytic sol–gel process. Journal of sol-gel science and technology, 69, (2014) 72-84. https://doi.org/10.1007/s10971-013-3188-1

L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, C. Yu, α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. The Journal of Physical Chemistry C, 114(49), (2010) 21868-21872. https://doi.org/10.1021/jp108778v

A. Manivel, G.J. Lee, C.Y. Chen, J.H. Chen, S.H. Ma, T.L. Horng, J.J. Wu, Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation. Materials Research Bulletin, 62, (2015) 184-191. https://doi.org/10.1016/j.materresbull.2014.11.016

Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano letters, 11(10), (2011) 4168-4175. https://doi.org/10.1021/nl2020476

Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Field emission from MoO3 nanobelts. Applied Physics Letters, 81(26), (2002) 5048-5050. https://doi.org/10.1063/1.1532104

A.K. Prasad, D.J. Kubinski, P.I. Gouma, Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sensors and Actuators B: Chemical, 93, (2003) 25–30. https://doi.org/10.1016/S0925-4005(03)00336-8

B. Zhao, J. Wang, H. Li, H. Wang, X. Jia, P. Su, The influence of yttrium dopant on the properties of anatase nanoparticles and the performance of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 17(22), (2015) 14836-14842. https://doi.org/10.1039/C5CP01178G

M. Vila, C. Díaz-Guerra, K. Lorenz, J. Piqueras, I. Píš, E. Magnano, C. Munuera, E. Alves, M.García-Hernández, Effects of thermal annealing on the structural and electronic properties of rare earth-implanted MoO3 nanoplates. Crystal Engineering Communications, 19(17), (2017) 2339-2348. https://doi.org/10.1039/C7CE00242D

C. Li, M. Liu, Y. Zeng, D. Yu, Preparation and properties of yttrium-modified lead zirconate titanate ferroelectric thin films. Sensors and Actuators A: Physical, 58(3), (1997) 245-247. https://doi.org/10.1016/S0924-4247(97)01400-3

A.L. Al-Alotaibi, N. Altamimi, E. Howsawi, K.A. Elsayed, I. Massoudi, A.E. Ramadan, Synthesis and Characterization of MoO3 for Photocatalytic Applications. Journal of Inorganic and Organometallic Polymers and Materials, 31, (2021) 2017-2029. https://doi.org/10.1007/s10904-021-01939-w

G. Yan, W. Zhang, Y. Huang, P. Zhang, J. Li, Luminescence enhancement for Y2 Mo4O15: Pr3+ red-emitting phosphors by Tb3+ co-doping. Journal of Materials Science: Materials in Electronics, 30, (2019) 14589-14599. https://doi.org/10.1007/s10854-019-01831-x

H. Qin, J. Xie, H. Xu, Y. Li, Y. Cao, Green solid-state chemical synthesis and excellent xylene-detecting behaviors of Y-doped α-MoO3 nanoarrays. Materials Research Bulletin, 93, (2017) 256-263. https://doi.org/10.1016/j.materresbull.2017.05.018

Massoudi, T. Ghrib, A.L. Al-Otaibi, K. Al-Hamadah, S. Al-Malky, M. Al-Otaibi, M. Al-Yatimi, Effect of yttrium substitution on microstructural, optical, and photocatalytic properties of ZnO nanostructures. Journal of Electronic Materials, 49, (2020) 5353-5362. https://doi.org/10.1007/s11664-020-08274-9

B. Jansi Rani, G. Ravi, R. Yuvakkumar, Fuad Ameen, Saleh AlNadhari, S.I. Hong, Fabrication and electrochemical OER activity of Ag doped MoO3 nanorods, Materials Science in Semiconductor Processing, 107, (2020) 104818. https://doi.org/10.1016/j.mssp.2019.104818

Z.R. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (100) wafers. Materials Science and Engineering: B, 174(1-3), (2010) 145-149. https://doi.org/10.1016/j.mseb.2010.03.006

M. Arshad, S. Ehtisham-ul-Haque, M. Bilal, N. Ahmad, A. Ahmad, M. Abbas, J. Nisar, M.I. Khan, A. Nazir, A. Ghaffar, M. Iqbal, Synthesis and characterization of Zn doped WO3 nanoparticles: photocatalytic, antifungal and antibacterial activities evaluation, Materials Research Express, 7(1), (2020) 015407. https://doi.org/10.1088/2053-1591/ab6380

A. Yazdanbakhsh, A. Eslami, M. Massoudinejad, M. Avazpour, Enhanced degradation of sulfamethoxazole antibiotic from aqueous solution using Mn-WO3/ LED photocatalytic process: kinetic, mechanism, degradation pathway and toxicity reduction. Chemical Engineering Journal, 380, (2020) 122497. https://doi.org/10.1016/j.cej.2019.122497

X. Ye, Y. Li, Y. Ai, Y. Nie, Novel powder packing theory with bimodal particle size distribution-application in superalloy. Advanced Powder Technology, 29(9), (2018) 2280-2287. https://doi.org/10.1016/j.apt.2018.06.012

J. Kaur, K. Anand, K. Anand, R.C. Singh, WO3 nanolamellae/reduced graphene oxide nanocomposites for highly sensitive and selective acetone sensing. Journal of Materials Science, 53, (2018) 12894-12907. https://doi.org/10.1007/s10853-018-2558-z

S.J. Liu, Y. Yuan, S.L. Zheng, J.H. Zhang, Y. Wang, (2015) Fabrication of C-doped WO3 nanoparticle cluster arrays from PS-b-P4VP for room temperature H2 sensing. Dalton Transactions, 44(25), 11360-11367. https://doi.org/10.1039/C5DT01369K

J. Chen, M. Wang, X. Liao, Z. Liu, J. Zhang, L. Ding, L. Gao, Y. Li, Large-scale synthesis of single-crystal molybdenum trioxide nanobelts by hot-wire chemical vapour deposition. Journal of Alloys and Compounds, 619, (2015) 406-410. https://doi.org/10.1016/j.jallcom.2014.09.069

M. Dieterle, G. Weinberg, G. Mestl, Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3− x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Physical Chemistry Chemical Physics, 4(5), (2002) 812-821. https://doi.org/10.1039/B107012F

M.A. Py, P.E. Schmid, J.T. Vallin, Raman scattering and structural properties of MoO3. Il Nuovo Cimento B, 38(2), (1977) 271–279. https://doi.org/10.1007/BF02723496

D. Tuschel, “Why are the Raman spectra of crystalline and amorphous solids different. Spectroscopy, 32(3), (2017) 26–33.

D. Li, J.F. Huang, L.Y. Cao, L. Jia-Yin, H.B. Ou Yang, C.Y. Yao, (2014). Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties. Ceramics International, 40(2), 2647-2653. https://doi.org/10.1016/j.ceramint.2013.10.061

I.P. Parkin, R. Palgrave, elf-cleaning coatings. Journal of materials chemistry, 15(17), (2005) 1689-1695. https://doi.org/10.1039/b412803f

U. Cernigoj, U.L. Stangar, P. Trebse, U.O. Krasovec, S. Gross, Photocatalytically active TiO2 thin films produced by surfactant-assisted solegel processing, Thin Solid Films, 495(1-2), (2006) 327-332. https://doi.org/10.1016/j.tsf.2005.08.240

H. Narayan, H. Alemu, L. Setofolo, L. Macheli, Visible Light Photocatalysis with Rare Earth Ion‐Doped TiO2 Nanocomposites. International Scholarly Research Notices, 2012(1), (2012) 841521. https://doi.org/10.5402/2012/841521

F. Heshmatpour, S. Zarrin, A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 346, (2017) 431-443. https://doi.org/10.1016/j.jphotochem.2017.06.017

S. Zarrin, F. Heshmatpour, Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. Journal of Hazardous Materials, 351, (2018) 147-159. https://doi.org/10.1016/j.jhazmat.2018.02.052

Y. Bian, Y. Ma, Y. Shang, P. Tan, J. Pan, Self-integrated β-Bi2O3/Bi2O2.33@Bi2O2CO3 ternary composites: Formation mechanism and visible light photocatalytic activity. Applied Surface Science, 430, (2018) 613-624. https://doi.org/10.1016/j.apsusc.2017.06.063

K. Dai, G. Dawson, S. Yang, Z. Chen, L. Lu, Large scale preparing carbon nanotube/zinc oxide hybrid and its application for highly reusable photocatalyst, Chemical Engineering Journal, 191, (2012) 571-578. https://doi.org/10.1016/j.cej.2012.03.008

S. Muthulingam, K.B. Bae, R. Khan, I.H. Lee, P. Uthirakumar, Improved daylight-induced photocatalytic performance and suppressed photocorrosion of N-doped ZnO decorated with carbon quantum dots, RSC Advances. 5(57), (2015) 46247-46251. https://doi.org/10.1039/C5RA07811C

Ahmad, E. Ahmed, M. Ahmad, M.S. Akhtar, M.A. Basharat, W.Q. Khan, M.I. Ghauri, A. Ali, M.F. Manzoor, The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination. Materials Science in Semiconductor Processing, 105, (2020) 104748. https://doi.org/10.1016/j.mssp.2019.104748

A.L. Al-Otaibi, Yttrium doped single-crystalline orthorhombic molybdenum oxide micro-belts: synthesis, structural, optical and photocatalytic properties. Journal of Inorganic and Organometallic Polymers and Materials, 31(8), (2021) 3416-3429. https://doi.org/10.1007/s10904-021-01999-y

N. Rajiv Chandar, S. Agilan, R. Thangarasu, N. Muthukumarasamy, J. Chandrasekaran, S. Arunachalam, S.R. Akshaya, Elucidation of efficient dual performance in photodegradation and antibacterial activity by a promising candidate Ni-doped MoO3 nanostructure. Journal of Sol-Gel Science and Technology, 100, (2021) 451-465. https://doi.org/10.1007/s10971-020-05382-0

A.L. Al-Otaibi, T. Ghrib, M. Alqahtani, M.A. Alharbi, R. Hamdi, I. Massoudi, Structural, optical and photocatalytic studies of Zn doped MoO3 nanobelts. Chemical Physics, 525, (2019) 110410. https://doi.org/10.1016/j.chemphys.2019.110410

N.R. Chandar, S. Agilan, N. Muthu Kumaraswamy, R. Thangarasu, (2019). An enhanced photocatalytic performance based on MoO3 and zn doped MoO3 Nano structures. Journal of Ovonic Research, 15(5), 287-299.

Z. Shen, G. Chen, Y. Yu, Q. Wang, C. Zhou, L. Hao, Y. Li, L.He, R. Mu, Sonochemistry synthesis of nanocrystals embedded in a MoO 3–CdS core–shell photocatalyst with enhanced hydrogen production and photodegradation. Journal of Materials Chemistry, 22(37), (2012) 19646-19651. https://doi.org/10.1039/C2JM33432A

B. Feng, Z. Wu, J. Liu, K. Zhu, Z. Li, X. Jin, Y. Hou , Q. Xi, M. Cong, P. Liu, Q. Gu, Combination of ultrafast dye-sensitized-assisted electron transfer process and novel Z-scheme system: AgBr nanoparticles interspersed MoO3 nanobelts for enhancing photocatalytic performance of RhB. Applied Catalysis B: Environmental, 206, (2017) 242-251. https://doi.org/10.1016/j.apcatb.2017.01.029

Q. Liu, Y. Wu, J. Zhang, K. Chen, C. Huang, H. Chen, X. Qiu, Plasmonic MoO3-x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst. Applied Surface Science, 490, (2019) 395-402. https://doi.org/10.1016/j.apsusc.2019.06.099

S. Adhikari, D.H. Kim, Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B. Applied Surface Science, 511, (2020) 145595. https://doi.org/10.1016/j.apsusc.2020.145595

N. Tariq, R. Fatima, S. Zulfiqar, A. Rahman, M.F. Warsi, I. Shakir, Synthesis and characterization of MoO3/CoFe2O4 nanocomposite for photocatalytic applications. Ceramics International, 46(13), (2020) 21596-21603. https://doi.org/10.1016/j.ceramint.2020.05.264

C. Maria Magdalane, K. Kaviyarasu, J. Judith Vijaya, B. Siddhardha, B. Jeyaraj, Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies, Journal of Photochemistry & Photobiology, B: Biology, 173, (2017) 23-34. https://doi.org/10.1016/j.jphotobiol.2017.05.024

Z.H. Zhao, J.B. Wang, J.B. Pan, Y.X. Tan, L. Chen, J.K. Guo, S. Shen, C.T. Au, S.F. Yin, Fabrication of Ag3PO4/Ag/MoO3-x Z-scheme system with excellent photocatalytic degradation performance under visible light irradiation, Materials Chemistry and Physics, 253, (2020) 123325. https://doi.org/10.1016/j.matchemphys.2020.123325

R. Rathnasamy, V. Alagan, A facile synthesis and characterization of α-MoO3 nanoneedles and nanoplates for visible-light photocatalytic application. Physica E: Low-dimensional Systems and Nanostructures, 102, (2018) 146-152. https://doi.org/10.1016/j.physe.2018.05.009

M. Liao, L. Wu, Q. Zhang, J. Dai, W. Yao, Controlled morphology of single-crystal molybdenum trioxide nanobelts for photocatalysis. Journal of Nanoscience and Nanotechnology, 20(3), (2020) 1917-1921. https://doi.org/10.1166/jnn.2020.16959

R. Rathnasamy, R. Thangamuthu, V. Alagan, Sheet-like orthorhombic MoO3 nanostructures prepared via hydrothermal approach for visible-light-driven photocatalytic application. Research on Chemical Intermediates, 44, (2018) 1647-1660. https://doi.org/10.1007/s11164-017-3190-2

Downloads

Published

2025-03-30

How to Cite

1.
T UD, D SK, M G, Nagarajan SK. Yttrium Doped MoO3 Nanoplates as Photocatalysts for Enhanced Removal of Organic dyes in Aqueous Solutions. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Mar. 30 [cited 2025 Oct. 27];7(2):245-60. Available from: https://asianrepo.org/index.php/irjmt/article/view/134