Temperature Sensitivity Assessment of Nonlinear Channel Tunnel Field-Effect Transistor for Raised Efficiency and Reliability in Nanoscale Electronics
DOI:
https://doi.org/10.54392/irjmt25218Keywords:
Linearity, Temperature Variation, Sensitivity, Step Channel, TFETAbstract
This article presents a thorough assessment of linearity for the Dual Metal Step Channel Heterojunction Negative Capacitance Double Gate Tunnel Field Effect Transistor (SC-HDM-TFET) for the temperature range of 200K to 500K. The SC-HDM-TFET's special dual metal gate, step channel and heterojunction provides better electrostatic control and increased tunneling efficiency. However temperature changes can considerably stimulus the mobility of the carriers, band-to-band tunneling (BTBT) rates by causing 2nd and 3rd order harmonic distortion (HD2 & HD3), intermodulation distortion (IMD3), and input-referred third-order intercept point (IIP3) and 2nd and 3rd order voltage intercept points (VIP2 & VIP3). Device linearity performance is assessed systematically for the specified range of temperature. SILVACO TCAD-2D is used for the device simulations and focus on the temperature-dependent behavior of the proposed device. From the results it is very clear that the SC-HDM-TFET's dual metal layout and step channel design both work together to reduce thermal deterioration and provide exceptional linearity stability even at elevated temperatures. This study demonstrates the SC-HDM-TFET's resilience for use in demanding thermal conditions, guaranteeing dependable operation in electronic systems of the future.
References
K.R.N. Karthik, C.K. Pandey, A Review of Tunnel Field-Effect Transistors for Improved ON-State Behaviour. Silicon 15, (2023) 1–23. https://doi.org/10.1007/s12633-022-02028-4
P.K. Kumawat, S. Birla, N. Singh, (Tunnel field effect transistor device structures: A comprehensive review. Materials Today: Proceedings, 79, 2023) 292-296. https://doi.org/10.1016/j.matpr.2022.11.203
G. Naima, S.B. Rahi, Low Power Circuit and System Design Hierarchy and Thermal Reliability of Tunnel Field Effect Transistor. Silicon 14, (2022) 3233–3243. https://doi.org/10.1007/s12633-021-01088-2
M. Zhang, Y. Guo, J. Zhang, J. Yao, J. Chen, Simulation Study of the Double-Gate Tunnel Field-Effect Transistor with Step Channel Thickness. Nanoscale Research Letters, 15, (2020) 128. https://doi.org/10.1186/s11671-020-03360-7
M. Anas, S.I. Amin, M.T. Beg, A. Anam, A. Chunn, S. Anand, Design and Analysis of GaSb/Si Based Negative Capacitance TFET at the Device and Circuit Level. Silicon, 14, (2022) 11951–11961 https://doi.org/10.1007/s12633-022-01918-x
G. Gopal, T. Varma, Simulation-Based Analysis of UltraThin-Body Double Gate Ferroelectric TFET for an Enhanced Electric Performance. Silicon 14, (2022) 6553–6563. https://doi.org/10.1007/s12633-021-01428-2
Y. Pathak, B.D. Malhotra, R. Chaujar, Analog/RF Performance and Effect of Temperature on Ferroelectric Layer Improved FET device with Spacer. Silicon 14, (2022) 12269–12280. https://doi.org/10.1007/s12633-022-01822-4
R. Saha, R. Goswami, B. Bhowmick, S. Baishya, Dependence of RF/Analog and Linearity Figure of Merits on Temperature in Ferroelectric FinFET: A Simulation Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(11), (2020) 2433-2439. https://doi.org/10.1109/TUFFC.2020.2999518
S. Singh, S. Singh, A. Naugarhiya, Optimization of si-doped hf o 2 ferroelectric material-based negative capacitance junctionless tfet: impact of temperature on rf/linearity performance. International Journal of Modern Physics B, 34(27), (2020) 2050242. https://doi.org/10.1142/S0217979220502422
W.Y. Choi, B.G. Park, J.D. Lee, T.J. K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Letters, 28(8), (2007) 743–745. https://doi.org/10.1109/LED.2007.901273
A. M. Ionescu, H. Riel, Tunnel field-effect transistors as energy efficient electronic switches. Nature, 479, (2011) 329–337. https://doi.org/10.1038/nature10679
K. Jeon, W.Y. Loh, P. Patel, C.Y. Kang, J. Oh, A. Bowonder, C. Park, C.S. Park, C. Smith, P. Majhi, J. Kavalieros, R. Kotlyar, J. M. Fastenau, B. Chu-Kung, (2010) Si tunnel transistors with a novel silicided source and 46mV/dec swing. 2010 Symposium on VLSI Technology, IEEE, USA. https://doi.org/10.1109/VLSIT.2010.5556195
G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, R. Rooyackers, D. Leonelli, C. Claeys, P. G. D. Agopian, M. D. V. Martino, S. G. S. Filho, J. A. Martino, D. S. Landsiedel, (2011) Fabrication, characterization, and physics of III–V heterojunction tunneling field-effect transistors (H-TFET) for steep sub-threshold swing. International Electron Devices Meeting, IEEE, USA. https://doi.org/10.1109/IEDM.2011.6131666
S. Chopra, S. Subramaniam, A review on challenges for MOSFET scaling. International Journal of Innovative Science, Engineering & Technology, 2(4), (2015) 1055–1057.
L. Agarwal, G. L. Priya, E. Papnassam, B. P. Kumar, M. Venkatesh, A novel metal dielectric metal based GAA-junction-less TFET structure for low loss SRAM design. Silicon, 15, (2023) 2989–3001. https://doi.org/10.1007/s12633-022-02218-0
J. Bitra, G. Komanapalli, A comprehensive performance investigation on junction-less TFET (JL-TFET) based biosensor: Device structure and sensitivity. Transactions on Electrical and Electronic Materials, 24, (2023) 365–372. https://doi.org/10.1007/s42341-023-00465-5
P. Singh, A. Raman, D. S. Yadav, N. Kumar, A. Dixit, M.H.R. Ansari, Ultra thin finger-like source region-based TFET: Temperature sensor. IEEE Sensors Letters, 8(5), (2024) 1–4. https://doi.org/10.1109/lsens.2024.3390689
G. Jain, R.S. Sawhney, R. Kumar, A.K. Yadav, S. Chopra, Design and comparative analysis of heterogeneous gate dielectric nanosheet TFET with temperature variance. Silicon, 15, (2023) 187–196. https://doi.org/10.1007/s12633-022-02013-x
Vedvrat, M. Y. Yasin, V. Gupta, and D. Pandey, “Improved switching and analog/RF behaviour of SiGe heterojunction dielectric modulated dual material nano silicon tunnel FET for low power applications,” Silicon, 16 (2024) 1297–1308. [https://doi.org/10.1007/s12633-023-02755-2
S.C. Kang, D. Lim, S.J. Kang, S.K. Lee, C. Choi, D.S. Lee, B.H. Lee, Hot-Carrier Degradation Estimation of a Silicon-onInsulator Tunneling FET Using Ambipolar Characteristics. IEEE Electron Device Letters, 40(11), (2019) 1716. https://doi.org/10.1109/LED.2019.2942837
P. Kaushal, G. Khanna, High Performance Sub-10nm Si-doped MoS2 based Step Structure DG-TFET. Physica E: Low-dimensional Systems and Nanostructures, 158, (2024) 115888. https://doi.org/10.1016/j.physe.2023.115888
Y. Morgan, M. Abouelatta, M. El-Banna, A. Shaker, (2020)TaperedShape Channel Engineering for Suppression of Ambipolar Current in TFET. In 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM), IEEE, China. https://doi.org/10.1109/ICICM50929.2020.9292260
Y.G. Hirphaa, A. Singh, T. Hailu, C. F. Wakweya, Impact of SiGe pocket on different shape TFET structures for gas sensing application. Micro and Nanostructures, 196, (2024) 207998. https://doi.org/10.1016/j.micrna.2024.207998
Vedvrat, M. Y. Yasin, and D. Pandey, Optimization of Dual Material Based Dielectric Modulated Heterojunction Double Gate Tunnel FETs with Noise Reduction Analysis for High Frequency Applications. Silicon 16 (2024) 4061–4075. https://doi.org/10.1007/s12633-024-02987-w
R.K. Sachan, Vedvrat, V. Gupta, S. Bajpai, Insight on Work-Function and Gate Oxide-Engineered Negative-Capacitance TFET for Enhanced Analog/RF Performance and DC Characteristics in High-Frequency Applications. Journal of Electronic Materials, 53, (2024) 8126–8140. https://doi.org/10.1007/s11664-024-11519-6
D. Luo, C. Li, Y. Q. Wang, O.W. Li, F.Y. Kuang, H. L. You, A novel inverted T-shaped negative capacitance TFET for label-free biosensing application. Microelectronics Journal, 139, (2023) 105886. https://doi.org/10.1016/j.mejo.2023.105886
S. Tiwari, R. Saha, Optical Performance of Split-Source Z-Shaped Horizontal-Pocket and Hetero-Stacked TFET-Based Photosensors. Journal of Electronic Materials, 52, (2023)1888–1899. https://doi.org/10.1007/s11664-022-10140-9
S. Tiwari, R. Saha, Sensitivity analysis of I-shape TFET biosensor considering repulsive steric and trap effects. IEEE Transactions on Nanotechnology, 22, (2023) 518 – 524. https://doi.org/10.1109/TNANO.2023.3309411
D. Das, C.K. Pandey, A dielectrically modulated vertical TFET-based biosensor considering irregular probe placement and steric hindrance issues. Micro and Nanostructures, 190, (2024) 207825. https://doi.org/10.1016/j.micrna.2024.207825
W. Xiao, L. Wang, Y. Peng, Y. Ding, Y. Ma, F. Yang, W. Liu , Z. Zhao, J. Xu, M. Tang, W. Bai, X. Tang, Improvement of C-shaped pocket TFET with sandwiched drain for ambipolar performance and analog/RF performance. Microelectronics Journal, 148, (2024) 106211. https://doi.org/10.1016/j.mejo.2024.106211
Y. Chengy, K. Imaiz, M. C. Jengx, Z. Liuk, K. Cheny, C. Hu, Modelling temperature effects of quarter micrometre MOSFETs in BSIM3v3 for circuit simulation. Semiconductor Science and Technology, 12, (1997) 1349–1354. https://doi.org/10.1088/0268-1242/12/11/004
M. Born, K. K. Bhuwalka, M. Schindler, U. Abilene, M. Schmidt, T. Sulima, I. Eisele, (2006) Tunnel FET: A CMOS device for high temperature applications. 25th International Conference on Microelectronics, IEEE, Serbia. https://doi.org/10.1109/ICMEL.2006.1650911
T. Nirschl, P.F. Wang, W. Hansch, D.S. Landsiedel, (2004) The tunneling field effect transistors (TFET): The temperature dependence, the simulation model, and its application. IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, BC. https://doi.org/10.1109/ISCAS.2004.1328846
P.G.D. Agopian, M.D.V. Martino, S.G.S. Filho, J.A. Martino, R. Rooyackers, D. Leonelli, C. Claeys, Temperature impact on the tunnel FET off-state current components. Solid-State Electron, 78, (2012) 141–146. https://doi.org/10.1016/j.sse.2012.05.053
S. Migita, K. Fukuda, Y. Morita, H. Ota, (2012) Experimental demonstration of temperature stability of Si-tunnel FET over Si-MOSFET. IEEE Silicon Nanoelectronics Workshop (SNW), IEEE, USA. https://doi.org/10.1109/SNW.2012.6243315
Vedvrat, Assessment of Trap Charges for Analog/RF FOMs and Linearity Behaviour on InAs Based Dual Metal Hetero Gate Oxide TFET for Enhanced Reliability. Silicon 16, (2024) 6107–6121. https://doi.org/10.1007/s12633-024-03137-y
V. Gupta, A.K. Pandey, A. Gupta, Vedvrat, & T.K. Gupta, Impact of process parameters variation on noise and linearity performances of GC-JL-GAA MOSFET. International Journal of Electronics, 112(3), (2025) 576-599. https://doi.org/10.1080/00207217.2024.2312560
S. Sharma, J. Madan, R. Chaujar, Insights into Temperature sensitivity Analysis of Polarity Controlled Charge Plasma Based Tunable Arsenide/Antimonide Tunneling Interfaced Junctionless TFET. IEEE Transactions on Nanotechnology, 24, (2025) 96 – 101. https://doi.org/10.1109/TNANO.2025.3532313
S. Saurabh, M. J. Kumar, Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor. IEEE Transactions on Electron Devices, 58(2), (2011) 404-410. https://doi.org/10.1109/TED.2010.2093142
A. M. Ionescu, L. Lattanzio, G. A. Salvatore, L. De Michielis, K. Boucart, D. Bouvet, The Hysteretic Ferroelectric Tunnel FET. IEEE Transactions on Electron Devices, 57(12), (2010) 3518 – 3524. https://doi.org/10.1109/TED.2010.2079531
C. Liu, P.G. Chen, M.J. Xie, S.N. Liu, J.W. Lee, S.-. Huang, S. Liu, Y.S. Chen, H.Y. Lee, M.H. Liao, P.S. Chen, M.H. Lee, Simulation-Based Study of Negative-Capacitance Double-Gate Tunnel Field-Effect Transistor with Ferroelectric Gate Stack. Japanese Journal of Applied Physics, 55(4S), (2016) 04EB08. https://doi.org/10.7567/JJAP.55.04EB08
S. Mueller, E. Yurchuk, S. Slesazeck, T. Mikolajick, J. Müller, T. Herrmann, A. Zaka, (2013) Performance Investigation and Optimization of Si: HfO 2 FeFETs on a 28 nm Bulk Technology. In 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM), IEEE, Czech Republic. https://doi.org/10.1109/ISAF.2013.6748709
P. Ghosh, B. Bhowmick, Effect of Temperature on Reliability Issues of Ferroelectric Dopant Segregated Schottky Barrier Tunnel Field Effect Transistor (Fe DS-SBTFET). Silicon 12, (2020) 1137-1144. https://doi.org/10.1007/s12633-019-00206-5
E. Datta, A. Chattopadhyay, A. Mallik, Y. Omura, Temperature Dependence of Analog Performance, Linearity, and Harmonic Distortion for a Ge-Source Tunnel FET. IEEE Transactions on Electron Devices, 67(3), (2020) 810-815. https://doi.org/10.1109/TED.2020.2968633
B.R. Raad, K. Nigam, D. Sharma, P. Kondekar. Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electronics Letters, 52(9), (2016) 770-772. https://doi.org/10.1049/el.2015.4348
N. Guenifi, S.B. Rahi, T. Ghodbane, Rigorous Study of Double Gate Tunneling Field Effect Transistor Structure Based on Silicon. Materials Focus, 7(6), (2018) 866. https://doi.org/10.1166/mat.2018.1600
V. Sharma, S. Kumar, J. Talukdar, K. Mummaneni, G. Rawat, Source Pocket-Engineered Hetero-Gate Dielectric SOI Tunnel FET with Improved Performance. Materials Science in Semiconductor Processing, 143, (2022) 106541. https://doi.org/10.1016/j.mssp.2022.106541
A. Kaur, C. Madhu, D. Kaur, Design and investigation of the double gate TFET with heterogeneous gate dielectric using different gate materials. Materials Today: Proceedings, 45, (2021) 5739-5744. https://doi.org/10.1016/j.matpr.2021.02.553
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rajeev Kumar Sachan, Vedvrat, Shrish Bajpai (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.