Computational study on the Structural and Spectroscopic Properties, Solvent Effects, Topological Insights, and Biological Activities of 2-[1-(2, 4-dichlorobenzyl)-1H-indazol-3-yl] Propan-2-ol as an Anticonvulsant Drug

Authors

  • Jenifer J Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India. Author
  • Ram Kumar A Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India. Author
  • Selvaraj S Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India. Author

DOI:

https://doi.org/10.54392/irjmt25215

Keywords:

DFT, Solvent Effect, NBO, Chemical Shifts, MEP, Molecular Docking

Abstract

In this study, computational methods were employed to investigate the structural, vibrational, chemical shift, topological, thermodynamical, and biological properties of 2-[1-(2,4-dichlorobenzyl)-1H-indazol-3-yl]propan-2-ol (DCBIP), along with solvent effects on its electronic spectra, frontier molecular orbitals (FMO), and molecular electrostatic potential (MEP) surfaces. Molecular geometry analysis identified seven bond types and nine bond angles. Vibrational analysis confirmed 108 fundamental modes associated with OH, CO, CH, CC, CN, NN, CCl, CH₂, and CH₃ functional groups. Chemical shift analysis validated the structural integrity of DCBIP, with deshielding effects observed for key carbons and protons due to electronegative interactions, hydrogen bonding, and inductive effects from chlorine substituents. The consistent FMO energy gap (4.9797–4.9879 eV) across solvents suggests minimal solvent influence, with greater stability in polar environments. Natural bond orbital (NBO) analysis identified the strongest stabilization from the lone pair (LP) of N4 donating to the antibonding σ*(C8-C9) orbital (40.25 kJ/mol), enhancing delocalization in the indazole ring. Mulliken analysis revealed Oas the most electronegative site and C9 as the most electropositive, while MEP maps confirmed nucleophilic regions over O3 and electrophilic sites over aromatic hydrogens. The specific heat capacity of DCBIP (77.31 cal mol⁻¹K⁻¹) reflects its moderate thermal energy absorption, influenced by vibrational contributions from its complex structure. Topological analyses highlighted electron localization at hydrogen atoms (H32, H37), delocalization in six-membered rings, and the presence of van der Waals interactions and steric effects in DCBIP. Molecular docking studies of DCBIP with 1EOU and 5FDC demonstrated strong binding affinities of -6.89 kcal/mol and -7.45 kcal/mol, respectively, suggesting its potential as an anticonvulsant agent.

References

I. Denya, S.F. Malan, J. Joubert, Indazole derivatives and their therapeutic applications: a patent review (2013-2017). Expert opinion on therapeutic patents, 28(6), (2018) 441-453. https://doi.org/10.1080/13543776.2018.1472240

S. Mal, U. Malik, M. Mahapatra, A. Mishra, D. Pal, S.K. Paidesetty, A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Development Research, 83(7), (2022)1469-1504. https://doi.org/10.1002/ddr.21979

W. Song, L. Li, L. Ma, Z. Yang, Z. Zheng, Z. Zhou, Synthesis, crystal structure, DFT, vibrational properties, Hirshfeld surface and antitumor activity studies of a new compound 2-(2-chloro-6-(m-tolyl) imidazo [1, 2-a] pyridin-3-yl)-N, N-diethylacetamide. Journal of Molecular Structure, 1307, (2024) 138052. https://doi.org/10.1016/j.molstruc.2024.138052

A. Singh, D. Malhotra, K. Singh, R. Chadha, P.M.S. Bedi, Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. Journal of Molecular Structure, 1266, (2022) 133479. https://doi.org/10.1016/j.molstruc.2022.133479

J.F. Lu, P. Huang, D. Zhang, Q. Wang, N. Zheng, R. Wu, Q. Liu, L.X. Jin, X.H. Yu, X.H. Ji, Y.H. Gao,1-(3-Amino-4-morpholino-1H-indazole-1-carbonyl)-N-phenylcyclopropane-1 carboxamide: Design, synthesis, crystal structure, antitumor activity, DFT and Hirshfeld surface analysis. Journal of Molecular Structure, 1210, (2020) 127996. https://doi.org/10.1016/j.molstruc.2020.127996

S. Puri, S. Sawant, K. Juvale, A comprehensive review on the indazole based derivatives as targeted anticancer agents. Journal of Molecular Structure, 1284 (2023) 135327. https://doi.org/10.1016/j.molstruc.2023.135327

A. Tanitame, Y. Oyamada, K. Ofuji, Y. Kyoya, K. Suzuki, H. Ito, M. Kawasaki, K. Nagai, M. Wachi, J.I. Yamagishi, Design, synthesis and structure–activity relationship studies of novel indazole analogues as DNA gyrase inhibitors with Gram-positive antibacterial activity. Bioorganic & medicinal chemistry letters, 14(11), (2024) 2857-2862. https://doi.org/10.1016/j.bmcl.2004.03.044

M. Minu, A. Thangadurai, S.R. Wakode, S.S. Agrawal, B. Narasimhan, Synthesis, antimicrobial activity and QSAR studies of new 2, 3-disubstituted-3, 3a, 4, 5, 6, 7-hexahydro-2H-indazoles. Bioorganic & medicinal chemistry letters, 19(11), (2009) 2960-2964. https://doi.org/10.1016/j.bmcl.2009.04.052

R.P. Chaudhary, P. Gautam, D. Gautam, I. Mittal, Ultrasound assisted regioselective synthesis, photophysical and structural studies of 1-substituted indazol-4 (5H)-ones and enaminodiketones of dimedone. Journal of Molecular Structure, 1228, (2021) 129710. https://doi.org/10.1016/j.molstruc.2020.129710

E.A. Abdelsalam, W.A. Zaghary, K.M. Amin, N.A. Abou Taleb, A.A. Mekawey, W.M. Eldehna, H.A. Abdel-Aziz, S.F. Hammad, Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorganic Chemistry, 89, (2019) 102985. https://doi.org/10.1016/j.bioorg.2019.102985

P.J. Park JoonSeok, Y.K. Yu KyungA, K.T. Kang TaeHee, K.S. Kim SungHoon, S.Y. Suh, Y. Ger, Discovery of novel indazole-linked triazoles as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 17, (2007) 3486-3490. https://doi.org/10.1016/j.bmcl.2007.03.074

K.P. Harish, K.N. Mohana, L. Mallesha, Synthesis of indazole substituted-1, 3, 4-thiadiazoles and their anticonvulsant activity. Drug invention today, 5(2), (2013) 92-99. https://doi.org/10.1016/j.dit.2013.06.002

A. Upadhyay, S.K. Srivastava, S.D. Srivastava, Conventional and microwave assisted synthesis of Some new N-[(4-oxo-2-substituted aryl −1, 3-thiazolidine)-acetamidyl]-5-nitroindazoles and its antimicrobial activity. European Journal Medicinal Chemistry, 45(9), (2010) 3541-3548. https://doi.org/10.1016/j.ejmech.2010.04.029

F.A.B. Schutz, T.K. Choueiri, C.N. Sternberg, Pazopanib: clinical development of a potent anti-angiogenic drug. Critical Reviews in Oncology/Hematology, 77(3), (2011) 163-171. https://doi.org/10.1016/j.critrevonc.2010.02.012

R. Tandon, I. Singh, V. Luxami, N. Tandon, K. Paul, Recent Advances and Developments of in vitro Evaluation of Heterocyclic Moieties on Cancer Cell Lines. The Chemical Record, 19(2-3), (2019) 362-393. https://doi.org/10.1002/tcr.201800024

M. Bersanelli, M. Brunelli, L. Gnetti, U. Maestroni, S. Buti, Pazopanib as a possible option for the treatment of metastatic non-clear cell renal carcinoma patients: a systematic review. Therapeutic Advances in Medical Oncology, 12, (2020) 1758835920915303. https://doi.org/10.1177/1758835920915303

G. Sonpavde, T.E. Hutson, B.I. Rini, Axitinib for renal cell carcinoma. Expert opinion on investigational drugs, 17(5), (2008) 741-748. https://doi.org/10.1517/13543784.17.5.741

G. Sonpavde, T.E. Hutson, C.N. Sternberg, Pazopanib, a potent orally administered small-molecule multitargeted tyrosine kinase inhibitor for renal cell carcinoma. Expert opinion on investigational drugs, 17(2), (2008) 253-261. https://doi.org/10.1517/13543784.17.2.253

M. Rouhani, Evaluation of structural properties and antioxidant capacity of Proxison: A DFT investigation. Computational and Theoretical Chemistry, 1195, (2021) 113096. https://doi.org/10.1016/j.comptc.2020.113096

K. Anandan, P. Kolandaivel, R. Kumaresan, Ab initio and DFT studies on tautomerism of indazole in gaseous and aqueous phases. Journal of Molecular Structure: Theochem, 686(1-3), (2004) 83-89. https://doi.org/10.1016/j.theochem.2004.08.014

B. Morzyk-Ociepa, K. Szmigiel-Bakalarz, M. Nentwig, O. Oeckler, M. Malik, Structural (X-ray), spectroscopic (FT-IR, FT-Raman) and computational (DFT) analysis of intermolecular interactions in 1H-indazole-3-carbaldehyde. Journal of Molecular Structure, 1237, (2021) 130318. https://doi.org/10.1016/j.molstruc.2021.130318

P.V. Ramana, Y.R. Krishna, K.C. Mouli, Experimental FT-IR and UV–Vis spectroscopic studies and molecular docking analysis of anti-cancer drugs Exemestane and Pazopanib. Journal of Molecular Structure, 1263, (2022) 133051. https://doi.org/10.1016/j.molstruc.2022.133051

M.M. Andres-Mach, M. Dudra-Jastrzebska, M. Mohamed, K.M. Sawicka, J. Kozinska, S.J. Czuczwar, 7-Nitroindazole enhances dose-dependently the anticonvulsant activities of conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Pharmacological reports, 58(660), (2006) 660-671.

N. Matsumura, K. Kikuchi-Utsumi, K. Sakamaki, M. Watabe, K. Aoyama, T. Nakaki, Anticonvulsant action of indazole. Epilepsy research, 104(3), (2013) 203-216. https://doi.org/10.1016/j.eplepsyres.2012.11.001

Parr, R. G. (1989). Density functional theory of atoms and molecules. In Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry, Springer, Netherlands.

W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 140, (1965) A1133. https://doi.org/10.1103/PhysRev.140.A1133

P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Physical review, 136, (1964) B864. https://doi.org/10.1103/PhysRev.136.B864

D.R. Salahub, M.C. Zerner, The Challenge of d and f Electrons: Theory and Computation. American Chemical Society, 394, (1989). https://doi.org/10.1021/bk-1989-0394

A.D. Becke, Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3), (1992) 2155-2160. https://doi.org/10.1063/1.462066

C. Lee, W. Yang, R.GParr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), (1988) 785. https://doi.org/10.1103/PhysRevB.37.785

B. Miehlich, A. Savin, H. Stoll, H. Preuss. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters, 157(3), (1989) 200-206. https://doi.org/10.1016/0009-2614(89)87234-3

M. J. Frisch, (2009). Gaussion 09W, Revision A. 02, Gaussion Inc. Walling ford, CT.

M. Petersilka, U.J. Gossmann, E.K.U. Gross. Excitation energies from time-dependent density-functional theory. Physical review letters. 76(8), (1996) 1212. https://doi.org/10.1103/PhysRevLett.76.1212

E. Runge, E.K.U Gross. Density-functional theory for time-dependent systems. Physical review letters, 52(12), (1984) 997. https://doi.org/10.1103/PhysRevLett.52.997

R. Bauernschmitt, R. Ahlrichs. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4-5), (1996) 454-464. https://doi.org/10.1016/0009-2614(96)00440-X

R. Ditchfield, Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts. Molecular Physics, 27(4), (1974) 789-807. https://doi.org/10.1080/00268977400100711

K. Wolinski, J. F. Hinton, P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), (1990) 8251-8260. https://doi.org/10.1021/ja00179a005

J.R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors. The Journal of chemical physics, 104(14), (1996) 5497-5509. https://doi.org/10.1063/1.471789

J. Gauss, Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals. Chemical physics letters, 191(6), (1992) 614-620. https://doi.org/10.1016/0009-2614(92)85598-5

J.A. Bohmann, F. Weinhold, T.C. Farrar, Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations. The Journal of chemical physics, 107(4), (1997) 1173-1184. https://doi.org/10.1063/1.474464

R.D.I.I. Dennington, T.A. Keith, J.M. Millam, (2016). GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS, 13(1).

G.A. Zhurko, D.A. Zhurko, (2009). Chemcraft Program Version 1.6 (Build 315).

A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Journal of Scientific Reports, 7(1), (2017) 42717. https://doi.org/10.1038/srep42717

G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal Computational Chemistry, 30, (2009) 2785-2791. https://doi.org/10.1002/jcc.21256

R.A. Laskowski, M. B. Swindells, LigPlot+: multiple ligand–protein interaction diagrams for drug discovery, 51, (2011) 2778-2786. https://doi.org/10.1021/ci200227u

S. Yuan, HCS. Chan, Z. Hu. Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), (2017) e1298. https://doi.org/10.1002/wcms.1298

T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), (2012) 580-592. https://doi.org/10.1002/jcc.22885

S. Armakovic, S.J. Armakovic, Atomistica. Online–web application for generating input files for ORCA molecular modelling package made with the Anvil platform. Molecular simulation, 49(1), (2023) 117-123. https://doi.org/10.1080/08927022.2022.2126865

S. Armakovic, S.J. Armakovic, Online and desktop graphical user interfaces for xtb programme from atomistica. online platform. Molecular Simulation, 50(7-9), (2024) 560-570. https://doi.org/10.1080/08927022.2024.2329736

L. K. Mapp, S.J. Coles, S. Aitipamula, CCDC 1531957: Experimental Crystal Structure Determination, 2017,

A. Ram Kumar, S. Selvaraj, A.S. Vickram, GP Sheeja Mol, Shikha Awasthi, M. Thirunavukkarasu, M. Selvaraj, S. Basumatary. Exploring the potential of diosgenin as a promising antitumor agent through comprehensive spectroscopic characterization, solvent–solute interactions, topological properties, Hirshfeld surface, and molecular docking interactions with 2NZT and 2I1V proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 327, (2025), 125349. https://doi.org/10.1016/j.saa.2024.125349

V. Vijayalakshmi, N. Kanagathara, Janczak Jan, M.K. Marchewka, Mohammad Azam, K. Senthilkumar, Structural, spectroscopic and second harmonic generation evaluation of 1, 2, 4-triazolinium tartrate-tartaric acid as a promising nonlinear optical material. Optical Materials, 147, (2024) 11469. https://doi.org/10.1016/j.optmat.2023.114694

S. Gunasekaran, S. Kumaresan, S. Seshadri, S. Muthu, Vibrational spectra and normal coordinate analysis of structure of procarbazine. Indian Journal of Pure and Applied Physics, (2008). https://doi.org/10.1007/s12043-008-0183-0

P. Divya, V. S. Jeba Reeda, V. Bena Jothy. Fungicide compound 2, 3-dichloronaphthalene-1, 4-dione: Non-covalent interactions (QTAIM, RDG and ELF), combined vibrational spectroscopic investigations using DFT approach with experimental analysis, electronic, molecular docking scrutiny in-vitro assay and thermodynamic property analysis. Journal of Molecular Liquids, 400, (2024) 124544. https://doi.org/10.1016/j.molliq.2024.124544

N. Suma, D. Aruldhas, I. Hubert Joe, S. Balachandran, A. Ronaldo Anuf, Arun Sasi, and Jesby George, Vibrational spectra, hydrogen bonding analysis and herbicidal activity study of mefenacet: A DFT approach. Journal of Molecular Structure, 1201, (2020) 127203. https://doi.org/10.1016/j.molstruc.2019.127203

C. Karnan, A. Ram Kumar, S. Selvaraj, Quantum chemical computational studies on the structural aspects, spectroscopic properties, hirshfeld surfaces, donor-acceptor interactions and molecular docking of clascosterone: a promising antitumor agent. International Research Journal of Multidisciplinary Technovation, 6(4), (2024) 32-53. https://doi.org/10.54392/irjmt2444

M.T. Gulluoglu, Y. Erdogdu, S. Yurdakul, Molecular structure and vibrational spectra of piperidine and 4-methylpiperidine by density functional theory and ab initio Hartree–Fock calculations. Journal of molecular structure, 834, (2007) 540-547. https://doi.org/10.1016/j.molstruc.2007.01.023

R.M. Silverstein, G. Clayton Bassler, Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), (1962) 546. https://doi.org/10.1021/ed039p546

S. Selvaraj, P. Rajkumar, M. Kesavan, S. Gunasekaran, S. Kumaresan, 2018. Experimental and theoretical investigations on spectroscopic properties of tropicamide. Journal of Molecular Structure, 1173, (2018) 52-62. https://doi.org/10.1016/j.molstruc.2018.06.097

C.Y. Panicker, H.T. Varghese, K.C. Mariamma, K. John, S. Mathew, J. Vinsova, C. Van Alsenoy, Y.S. Mary, Spectroscopic investigations and computational study of 2‐[acetyl (4‐bromophenyl) carbamoyl]‐4‐chlorophenyl acetate. Journal of Raman Spectroscopy, 41(6), (2010) 707-716. https://doi.org/10.1002/jrs.2492

J.N. Cheerlin Mishma, V. Bena Jothy, B. Narayana, Suresh N Kodlady, Naiyf S. Alharbi, Ghulam Abbas, S. Muthu, Synthesis, DFT, solvent effect and biological attributes of NLO active 4-bromo-2-((2-(2, 4-Dinitrophenyl) hydrazono) methyl) phenol-Potent drug anti-brain cancer. Journal of Molecular Structure, 1289, (2023) 135839. https://doi.org/10.1016/j.molstruc.2023.135839

S. Selvaraj, A. Ram Kumar, T. Ahilan, M. Kesavan, S. Gunasekaran, S. Kumaresan, Multi spectroscopic and computational investigations on the electronic structure of oxyclozanide. Journal of the Indian Chemical Society, 99(10), (2022) 100676. https://doi.org/10.1016/j.jics.2022.100676

K.R. Cousins (2011). Computer review of ChemDraw ultra 12.0.

M. Karabacak, E. Kose, A. Atac, A. M. Asiri, M. Kurt, Monomeric and dimeric structures analysis and spectroscopic characterization of 3, 5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations. Journal of molecular structure, 1058, (2014), 79-96. https://doi.org/10.1016/j.molstruc.2013.10.064

M.A.S. Sakr, F.F. Sherbiny, A.A. Sh. El-Etrawy, Hydrazone-based Materials; DFT, TD-DFT, NBO Analysis, Fukui Function, MESP Analysis, and Solar Cell Applications. Journal of Fluorescence, 32, (2022) 1857-1871. https://doi.org/10.1007/s10895-022-03000-6

P. Jayaprakash, S. Selvaraj, A. Ram Kumar. A new organic compound (C9H12N2O2): crystal structure, characterization, Hirshfeld surface analysis, electronic properties, NLO properties, DFT calculation and molecular docking. Solid State Sciences, 154, (2024) 107587. https://doi.org/10.1016/j.solidstatesciences.2024.107587

R. Suja, A. Rathika, V. S. Jeba Reeda, A. Arun Kumar, P. Divya, Synthesis, spectroscopic analysis (FT-IR, FT-Raman, UV, NMR), non-covalent interactions (RDG, IGM) and dynamic simulation on Bis (8 hydroxy quinoline) salicylate salicylic acid. Journal of Molecular Structure, 1310, (2024) 138231. https://doi.org/10.1016/j.molstruc.2024.138231

V.S. Jeba Reeda, P. Divya, A. Amala Jeya Ranchani, A. Manikandan, Shakeel Alvi, Rashid Ali, Nazia Siddiqui, Nazrul Haq, S. Muthu, Ray Butcher, Saleem Javed, Comprehensive analysis of 2, 5-dimethyl-1-(naphthalen-1-yl)-1H-pyrrole: X-ray crystal structure, spectral, computational, molecular properties, docking studies, molecular dynamics, and MMPBSA. Journal of Molecular Structure, 1321, (2025) 140062. https://doi.org/10.1016/j.molstruc.2024.140062

X. Chen, H. Li, L. Tian, Q. Li, J. Luo, Y. Zhang, Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. Journal of computational biology, 27(9), (2020) 1397-1406. https://doi.org/10.1089/cmb.2019.0323

E. Mohanapriya, S. Elangovan, N. Kanagathara, M.K. Marchewka, Jan Janczak, P. Revathi, Density functional theory calculations, structural and spectroscopic characterization, and solvent-dependent HOMO-LUMO studies of 2-nitro-4-methylanilinium benzenesulfonate, Journal of Molecular Structure, 1317, (2024) 139147. https://doi.org/10.1016/j.molstruc.2024.139147

S. Akshay Kalyan, N. Kanagathara, M.K. Marchewka, Jan Janczak, K. Senthilkumar, Structure, Spectroscopy, and Theoretical insights on Co-crystals of 2, 4-Diamino-6-Methyl-1, 3, 5-Triazine Bis (4-Aminobenzoic acid) Monohydrate as a promising anti-cancer agent, Physica B: Condensed Matter, 679, (2024) 415807. https://doi.org/10.1016/j.physb.2024.415807

Downloads

Published

2025-03-30

How to Cite

1.
J J, A RK, S S. Computational study on the Structural and Spectroscopic Properties, Solvent Effects, Topological Insights, and Biological Activities of 2-[1-(2, 4-dichlorobenzyl)-1H-indazol-3-yl] Propan-2-ol as an Anticonvulsant Drug. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Mar. 30 [cited 2025 Sep. 11];7(2):198-222. Available from: https://asianrepo.org/index.php/irjmt/article/view/136