Optimized Computer Vision Model for Accurate Polyp Detection in Endoscopic Procedures
DOI:
https://doi.org/10.54392/irjmt25312Keywords:
Polyp Detection, Endoscopic Videos, Advanced Computer Vision, Adaptive Masked Cuttlefish Region Convolve NeuroNet (AMC-RCN), Colorectal CancerAbstract
Colorectal Cancer (CRC) is the main reason for cancer-linked morbidity and death globally, and early recognition has an important responsibility in enhancing patient endurance rates. Detecting polyp’s precursors to CRC significantly reduces mortality when identified in the early stages. The data is gathered from endoscopic video data from publicly available datasets. The preprocessing pipeline includes Contrast-Limited Adaptive Histogram Equalization (CLAHE) to enhance image contrast, followed by Histogram of Gradients (HOG) for feature extraction. This research introduces a framework for concurrent polyp detection in endoscopic videos utilizing advanced computer vision techniques, specifically the Adaptive Masked Cuttlefish Region Convolve NeuroNet (AMC-RCN). This hybrid model integrates the strengths of Mask Region Convolve NeuroNet (R-CNN) and Adaptive Cuttlefish Optimization (ACFO) to achieve precise and efficient polyp detection. The Mask R-CNN component utilizes Region Proposal Networks (RPN) to accurately locate polyps, generating bounding boxes and pixel-wise segmentation masks. The ACFO algorithm further refines the model by optimizing hyper-parameters, improving segmentation boundaries, and selecting the most relevant features from the endoscopic frames, ensuring optimal performance. The AMC-RCN framework effectively handles small and irregular polyps, ensuring high segmentation (98.02%), precision (97.91), F1-score (96.97%), and recall (97.07%) even in complex and challenging scenarios. The model is evaluated on prominent video datasets, providing a comprehensive set of endoscopic video footage for rigorous testing. The framework demonstrates superior detection accuracy, faster training convergence, and robust performance in clinical applications.
References
I. Rebollo, N. Wolpert, & C. Tallon-Baudry, Brain–stomach coupling: Anatomy, functions, and future avenues of research. Current Opinion in Biomedical Engineering, 18, (2021) 100270. https://doi.org/10.1016/j.cobme.2021.100270
S. Venugopal, A. Ramaiah, V. S. Panda, S. Ambikapathy, A., & A. MB, Sustainable augmented framework using smart sensors with ATM inspired 5G technologies for enterprise networks. International Journal of Information Technology, (2024) 1-8. https://doi.org/10.1007/s41870-024-02013-7
R. L. Siegel, K. D. Miller, N. S. Wagle and A. Jemal, Cancer statistics, 2023. CA: a cancer journal for clinicians, 73(1), (2023) 17-48. https://doi.org/10.3322/caac.21763
M. Pinheiro, D. N. Moreira, & M. Ghidini, Colon and rectal cancer: An emergent public health problem. World Journal of Gastroenterology, 30(7), (2024) 644. https://doi.org/10.3748/wjg.v30.i7.644
J. Lewis, Y. J. Cha, & J. Kim, Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images. Scientific Reports, 13(1), (2023) 1183. https://doi.org/10.1038/s41598-023-28530-2
A. O. Ige, N. K. Tomar, F. O. Aranuwa, O. Oriola, A. O. Akingbesote, M. H. M. Noor, ... & B. S. Aribisala, Convsegnet: automated polyp segmentation from colonoscopy using context feature refinement with multiple convolutional kernel sizes. IEEE Access, 11, (2023) 16142-16155. https://doi.org/10.1109/ACCESS.2023.3244789
P. Sasmal, V. Sharma, A. J. Prakash, M. K. Bhuyan, K. K. Patro, N. A. Samee, ... & P. Pławiak, Semi-supervised generative adversarial networks for improved colorectal polyp classification using histopathological images. Information Sciences, 658, (2024) 120033. https://doi.org/10.1016/j.ins.2023.120033
L. Xu, X. He, J. Zhou, J. Zhang, X. Mao, G. Ye, Q. Chen, F. Xu, J. Sang, J. Wang, Y. Ding, Artificial intelligence‐assisted colonoscopy: a prospective, multicenter, randomized controlled trial of polyp detection. Cancer medicine, 10(20), (2021) 7184-7193. https://doi.org/10.1002/cam4.4261
W. Jiang, L. Xin, S. Zhu, Z. Liu, J. Wu, F. Ji, C. Yu and Z. Shen, Risk factors related to polyp miss rate of short-term repeated colonoscopy. Digestive diseases and sciences, 68(5), (2023) 2040-2049. https://doi.org/10.1007/s10620-023-07848-x
Z. F. Khan, M. Ramzan, M. Raza, M. A. Khan, A. Alasiry, M. Marzougui and J. Shin, Real-time polyp Detection from Endoscopic Images using YOLOv8 with YOLO-Score Metrics for Enhanced Suitability Assessment. IEEE Access, (2024). https://doi.org/10.1109/ACCESS.2024.3505619
A. Krenzer, M. Banck, K. Makowski, A. Hekalo, D. Fitting, J. Troya, B. Sudarevic, W. G. Zoller, A. Hann and F. Puppe, A real-time polyp-detection system with clinical application in colonoscopy using deep convolutional neural networks. Journal of Imaging, 9(2), (2023) 26. https://doi.org/10.3390/jimaging9020026
D. Jha, S. Ali, N. K. Tomar, H. D. Johansen, D. Johansen, J. Rittscher, M. A. Riegler and P. Halvorsen, Real-time polyp detection, localization, and segmentation in colonoscopy using deep learning. Ieee Access, 9, (2021) 40496-40510. https://doi.org/10.1109/ACCESS.2021.3063716
J. Y. Lee, J. Jeong, E. M. Song, C. Ha, H. J. Lee, J. E. Koo, D. H. Yang, N. Kim and J. S. Byeon, Real-time detection of colon polyps during colonoscopy using deep learning: systematic validation with four independent datasets. Scientific reports, 10(1), (2020) 8379. https://doi.org/10.1038/s41598-020-65387-1
A. Nogueira-Rodríguez, R. Domínguez-Carbajales, F. Campos-Tato, J. Herrero, M. Puga, D. Remedios, L. Rivas, E. Sánchez, A. Iglesias, J. Cubiella and F. Fdez-Riverola, Real-time polyp detection model using convolutional neural networks. Neural Computing and Applications, 34(13), (2022) 10375-10396. https://doi.org/10.1007/s00521-021-06496-4
C. C. Poon, Y. Jiang, R. Zhang, W. W. Lo, M. S. Cheung, R. Yu, Y. Zheng, J. C. Wong, Q. Liu, S. H. Wong and T. W. Mak, AI-endoscopist: a real-time deep-learning-based algorithm for localizing polyps in colonoscopy videos with edge computing devices. NPJ digital medicine, 3(1), (2020) 73. https://doi.org/10.1038/s41746-020-0281-z
T. Yu, N. Lin, X. Zhang, Y. Pan, H. Hu, W. Zheng, J. Liu, W. Hu, H. Duan and J. Si, An end-to-end tracking method for polyp detectors in colonoscopy videos. Artificial intelligence in medicine, 131, (2022) 102363. https://doi.org/10.1016/j.artmed.2022.102363
D. M. Livovsky, D. Veikherman, T. Golany, A. Aides, V. Dashinsky, N. Rabani, D. B. Shimol, Y. Blau, L. Katzir, I. Shimshoni and Y. Liu, Detection of elusive polyps using a large-scale artificial intelligence system (with videos). Gastrointestinal Endoscopy, 94(6), (2021) 1099-1109. https://doi.org/10.1016/j.gie.2021.06.021
B. Si, C. Pang, Z. Wang, P. Jiang and G. Yan, Real-Time Lightweight Convolutional Neural Network for Polyp Detection in Endoscope Images. Journal of Shanghai Jiaotong University (Science), (2023) 1-14. https://doi.org/10.1007/s12204-023-2671-2
E. Liu, B. He, D. Zhu, Y. Chen and Z. Xu, Tiny polyp detection from endoscopic video frames using vision transformers. Pattern Analysis and Applications, 27(2), (2024) 38. https://doi.org/10.1007/s10044-024-01254-3
L. Wu, M. Xu, X. Jiang, X. He, H. Zhang, Y. Ai, Q. Tong, P. Lv, B. Lu, M. Guo and M. Huang, Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos). Gastrointestinal Endoscopy, 95(2), (2022) 269-280. https://doi.org/10.1016/j.gie.2021.09.017
J. W. Li, T. Chia, K. M. Fock, K. D. W. Chong, Y. J. Wong and T. L. Ang, Artificial intelligence and polyp detection in colonoscopy: use of a single neural network to achieve rapid polyp localization for clinical use. Journal of Gastroenterology and Hepatology, 36(12), (2021) 3298-3307. https://doi.org/10.1111/jgh.15642
Z. He, K. Zhang, N. Zhao, Y. Wang, W. Hou, Q. Meng, C. Li, J. Chen and J. Li, Deep learning for real-time detection of nasopharyngeal carcinoma during nasopharyngeal endoscopy. Science, 26(10), (2023). https://doi.org/10.1016/j.isci.2023.107463
D. Fitting, A. Krenzer, J. Troya, M. Banck, B. Sudarevic, M. Brand, W. Böck, W. G. Zoller, T. Rösch, F. Puppe and A. Meining, A video-based benchmark data set (ENDOTEST) to evaluate computer-aided polyp detection systems. Scandinavian Journal of Gastroenterology, 57(11), (2022) 1397-1403. https://doi.org/10.1080/00365521.2022.2085059
V. Sharma, P. Sasmal, M. K. Bhuyan, P. K. Das, Y. Iwahori and K. Kasugai, A multi-scale attention framework for automated polyp localization and keyframe extraction from colonoscopy videos. IEEE Transactions on Automation Science and Engineering, (2023). https://doi.org/10.1109/TASE.2023.3315518
L. H. Lau, J. C. Ho, J. C. Lai, A. H. Ho, C. W. Wu, V. W. Lo, C. M. Lai, M. W. Scheppach, F. Sia, K. H. Ho and X. Xiao, Effect of real-time computer-aided polyp detection system (ENDO-AID) on adenoma detection in endoscopists-in-training: a randomized trial. Clinical Gastroenterology and Hepatology, 22(3), (2024) 630-641. https://doi.org/10.1016/j.cgh.2023.10.019
J. Fu, Y. Gao, P. Zhou, Y. Huang, J. Jiao, S. Lin, Y. Wang and Y. Guo, D2polyp-Net: A cross-modal space-guided network for real-time colorectal polyp detection and diagnosis. Biomedical Signal Processing and Control, 91, (2024) 105934. https://doi.org/10.1016/j.bspc.2023.105934
PolypGen video sequence. (2023, October 1). Kaggle. https://www.kaggle.com/datasets/debeshjha1/polypgen-video-sequence
J. Xu, Y. Kuai, Q. Chen, X. Wang, Y. Zhao and B. Sun, Spatio-Temporal Feature Transformation Based Polyp Recognition for Automatic Detection: Higher Accuracy than Novice Endoscopists in Colorectal Polyp Detection and Diagnosis. Digestive Diseases and Sciences, 69(3), (2024) 911-921. https://doi.org/10.1007/s10620-024-08277-0
L. Zhao, N. Wang, X. Zhu, Z. Wu, A. Shen, L. Zhang, R. Wang, D. Wang and S. Zhang, Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma. Scientific Reports, 14(1), (2024) 10750. https://doi.org/10.1038/s41598-024-61342-6
A. Ambikapathy, T. D. Beeta, R. K. Kanna, A. Danquah-Amoah, V. S. Ramya, & U. Mutheeswaran, Biometric Application on Facial Image Recognition Techniques. In 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Vol. 5, (2024) 848-851. IEEE. https://doi.org/10.1109/IC2PCT60090.2024.10486608
P. Sunthornwetchapong, K. Hombubpha, K. Tiankanon, S. Aniwan, P. Jakkrawankul, N. Nupairoj, P. Vateekul and R. Rerknimitr, Real-Time Multi-Task Deep Learning Model for Polyp Detection, Characterization, and Size Estimation. IEEE Access, (2025). https://doi.org/10.1109/ACCESS.2025.3527720
K. Venkatachalam, A. Devipriya, J. Maniraj, M. Sivaram, & A. Ambikapathy, A Novel Method of motor imagery classification using eeg signal. Artificial intelligence in medicine, 103, (2020) 101787. https://doi.org/10.1016/j.artmed.2019.101787
A. Ambikapathy, G. Singh, & P. Tiwari, Smart switching algorithm between IC and PO algorithms for grid-connected PV system. In Advances in smart grid and renewable energy: Proceedings of ETAEERE-2016, (2017) 83-92. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-4286-7_9
Z. Khan, R. K. Kanna, K. Parthasarathy, S. Vijayaraj, R. Chandrasekaran, & S. Jawla, Intelligent computational ensemble model for predicting cerebral aneurysm using the concept of region localization in multi-section CT angiography. International Journal of Information Technology, (2025) 1-7. https://doi.org/10.1007/s41870-024-02292-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Swetha Kumari T, Vasuki R (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.