Design of Instrumentation System for Piezoelectric-Based Rainfall Power Generation
DOI:
https://doi.org/10.54392/irjmt25318Keywords:
Instrumentation System, Piezoelectric Sensors, Rainfall energy, Energy Harvesting, Gage R&RAbstract
This research presents the systematic design, implementation, and evaluation of a piezoelectric-based instrumentation system for energy harvesting from precipitation events. Utilizing Lead Zirconate Titanate (PZT) transducers, signal conditioning via an LM741 operational amplifier, and an Arduino Mega2560 microcontroller for data acquisition and control, the system converts the mechanical energy of raindrop impacts into electrical output. Laboratory simulations were conducted under controlled variations in water droplet height (170–270 cm) to evaluate the electrical response in both series and parallel transducer configurations. Experimental results demonstrated peak output voltages of 2.68 V and 2.66 V for series and parallel configurations, respectively. Measurement system evaluation using Gage Repeatability and Reproducibility (Gage R&R) analysis revealed a total system variability of 4.36% (series) and 1.89% (parallel), confirming high measurement precision and robustness. Despite the low-voltage nature of the generated power, the system validates the feasibility of utilizing rainfall as a renewable energy source for low-power applications. Future research will focus on enhancing energy conversion efficiency through advanced piezoelectric materials, optimized circuit topology including DC-DC boost converters, and integration with high-capacity energy storage modules such as supercapacitors. Moreover, real-time performance monitoring via IoT-based platforms and hybridization with solar or wind systems is proposed for broader applicability.
References
N.E. DuToit, B.L. Wardle, S.G. Kim, Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics,71(1), (2005) 121-160. https://doi.org/10.1080/10584580590964574
R. Guigon, J.J. Chaillout, T. Jager, G. Despesse, Harvesting raindrop energy: Theory. Smart materials and structures, 17(1), (2008) 015038. https://doi.org/10.1088/0964-1726/17/01/015038
R. Guigon, J.J. Chaillout, T. Jager, and G. Despesse, Harvesting raindrop energy: Experimental study. Smart materials and structures, 17(1), (2008) 015039. https://doi.org/10.1088/0964-1726/17/01/015039
C.H. Wong, Z. Dahari, M.H. Jumali, K. Mohamed, J.J. Mohamed, Simulation and Fabrication of Wagon-Wheel-Shaped Piezoelectric Transducer for Raindrop Energy Harvesting Application. Journal of Electronic Materials, 46, (2017) 1587-1597. https://doi.org/10.1007/s11664-016-5201-2
F. Viola, P. Romano, R. Miceli, G. Acciari, C. Spataro, (2014) Piezoelectric model of rainfall energy harvester, in 2014 9th International Conference on Ecological Vehicles and Renewable Energies, EVER, IEEE, Carlo, Monaco. https://doi.org/10.1109/EVER.2014.6844093
M. Al Ahmad, Piezoelectric water drop energy harvesting. Journal of electronic materials, 43, (2014) 452-458. https://doi.org/10.1007/s11664-013-2826-2
C. Covaci, A. Gontean, Piezoelectric energy harvesting solutions: A review. Sensors, 20(12), (2020) 3512. https://doi.org/10.3390/s20123512
M. Zhang, J. Wang, Experimental study on piezoelectric energy harvesting from vortex-induced vibrations and wake-induced vibrations. Journal of Sensors, 2016(1), (2016) 2673292. https://doi.org/10.1155/2016/2673292
W. Tian, Z. Ling, W. Yu, J. Shi, A review of MEMS scale piezoelectric energy harvester. Applied Sciences, 8(4), (2018) 645. https://doi.org/10.3390/app8040645
D. Kumar, P. Chaturvedi, N. Jejurikar, 2014 Piezoelectric energy harvester design and power conditioning, in 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, IEEE, Bhopal, India. https://doi.org/10.1109/SCEECS.2014.6804491
D. Vasic, Y. Yao, PWM interface for piezoelectric energy harvesting. Electronics Letters, 49(13), (2013) 843-845. https://doi.org/10.1049/el.2013.1278
J. Hu, J. Jong, C. Zhao, Vibration Energy Harvesting Based on Integrated Piezoelectric Components Operating in Different Modes, IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, IEEE, 57(2), (2010) 386-394. https://doi.org/10.1109/TUFFC.2010.1418
X. He, Q. Wen, Y. Sun, Z. Wen, A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester. Nano Energy, 40, (2017) 300-307. https://doi.org/10.1016/j.nanoen.2017.08.024
Z. Yang, S. Zhou, J. Zu, D. Inman, High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule, 2(4), (2018) 642-697. https://doi.org/10.1016/j.joule.2018.03.011
A. Moonik, J. Rantung, B. Maluegha, Pemanen Energi Listrik Dari Curah Hujan Melalui Transduser Piezoelektrik Secara Seri Dan Paralel. Jurnal Poros Mesin Unsrat, 12(1), (2022) 1-12.
C.H. Wong, Z. Dahari, A. Abd Manaf, M.A. Miskam, Harvesting raindrop energy with piezoelectrics: A review. Journal of Electronic Materials, 44(1), (2015) 13-21. https://doi.org/10.1007/s11664-014-3443-4
F. Narita, M. Fox, A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), (2018) 1700743. https://doi.org/10.1002/adem.201700743
M. Bichurin, R. Petrov, V. Leontiev, G. Semenov, O. Sokolov, Magnetoelectric Current Sensors. Sensors, 17(6), (2017) 1271. https://doi.org/10.3390/s17061271
A.K. Batra, J.R. Currie, A.A. Alomari, M.D. Aggarwal, C.R. Bowen, A versatile and fully instrumented test station for piezoelectric energy harvesters. Measurement, 114, (2018) 9-15. https://doi.org/10.1016/j.measurement.2017.08.038
Z. Wang, L. He, X. Gu, S. Yang, S. Wang, P. Wang, G. Cheng, Rotational energy harvesting systems using piezoelectric materials: A review. Review of Scientific Instruments, 92(4), 2021. https://doi.org/10.1063/5.0039730
L.N. Harris, Quality control and industrial statistics. Acheson J. Duncan, Irwin, 1986. number of pages: 1123 (1989), 250-251. https://doi.org/10.1002/qre.4680050315
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jotje Rantung, Benny Maluegha, Yan Tondok, Gideon David Rantung (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.