Detection of Distributed Denial of Service Attacks Based on Deep Learning Approaches: A Survey, Taxonomy, and Challenges

Authors

  • Vidhya G Department of Computer Science, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India Author https://orcid.org/0009-0007-0445-3516
  • Jagadheeswari M Department of Computer Science, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India Author

DOI:

https://doi.org/10.54392/irjmt25411

Keywords:

DDoS Attack Detection, Network Security, Computer Network, Deep Learning

Abstract

DDoS attacks are among the most dangerous dangers to the digital world, according to recent theoretical and empirical research. Over time, DDoS attack mitigation strategies have developed to guarantee security. In the past, several traditional techniques, including heuristics and signatures, were employed to detect DDoS attacks encoded with different characteristics. The advanced obfuscation strategies used by new generations of DDoS attackers were too formidable for detection tools designed for traditional DDoS attacks. Since DL-based systems beat traditional DDoS attack detection techniques in discovering novel DDoS attack variations, Deep Learning (DL) is being employed more and more in DDoS attacks. Additionally, DL-based methods offer quick DDoS attack prediction together with superior detection rates and DDoS attack analysis. Thus, this work is interested in examining recently suggested DL-based DDoS attack detection systems and their development. It provides a comprehensive examination of the most current advances in DL-based detection methods. This survey's main objective is to give readers a thorough grasp of the applications of DL for detection. The outcome of this review discusses various DL methods, their strengths and weaknesses, datasets, challenges of recent research work, and future enhancements of present works.

References

P. Bojović, I. Bašičević, S. Ocovaj, M. Popović, A practical approach to detection of distributed denial-of-service attacks using a hybrid detection method. Computers & Electrical Engineering, 73, (2019) 84-96. https://doi.org/10.1016/j.compeleceng.2018.11.004

J. Lansky, S. Ali, M. Mohammadi, M.K. Majeed, S.H.T. Karim, S. Rashidi, M. Hosseinzadeh, A. M. Rahmani, Deep learning-based intrusion detection systems: a systematic review. IEEE Access, 9, (2021) 101574-101599. https://doi.org/10.1109/ACCESS.2021.3097247

T. A. Tuan, H. V. Long, L. H. Son, R. Kumar, I. Priyadarshini, N.T.K. Son, Performance evaluation of Botnet DDoS attack detection using machine learning. Evolutionary Intelligence, 13, (2020) 283-294. https://doi.org/10.1007/s12065-019-00310-w

M.T. Hussan, G. V. Reddy, P. Anitha, A. Kanagaraj, P. Naresh, DDoS attack detection in IoT environment using optimized Elman recurrent neural networks based on chaotic bacterial colony optimization. Cluster Computing, 27(4), (2024) 4469-4490. https://doi.org/10.1007/s10586-023-04187-4

Y. Wu, D. Wei, J. Feng, Network attacks detection methods based on deep learning techniques: A survey. Security and Communication Networks, 2020(1), (2020) 8872923. https://doi.org/10.1155/2020/8872923

A.A. Habib, A. Imtiaz, D. Tripura, M. O. Faruk, M.A. Hossain, I. Ara, S. Sarker, A.F.Z. Abadin, Distributed denial-of-service attack detection short review: issues, challenges, and recommendations. Bulletin of Electrical Engineering and Informatics, 14(1), (2025) 438-446. https://doi.org/10.11591/eei.v14i1.8377

N. K. Almazmomi, Long short-term memory-based intrusion detection system using hybrid grid search and sequential chimp optimization algorithm-based hyperparameter tuning. Intelligent Decision Technologies, 19(2), (2025) 18724981241291422. https://doi.org/10.1177/18724981241291422

Y. Omer, P. Jorge, (2023). DDoS threat report for 2023 Q4. The Cloudflare Blog. https://blog.cloudflare.com/ddos-threat-report-2023-q4/

Q.A. Al‐Haija, A. Droos, A comprehensive survey on deep learning‐based intrusion detection systems in Internet of Things (IoT). Expert Systems, 42(2), (2025) e13726. https://doi.org/10.1111/exsy.13726

K.M. Abuali, L. Nissirat, A. Al-Samawi, Advancing Network Security with AI: SVM-Based Deep Learning for Intrusion Detection. Sensors, 23(21), (2023) 8959. https://doi.org/10.3390/s23218959

L.D. Tsobdjou, S. Pierre, A. Quintero, An online entropy-based DDoS flooding attack detection system with dynamic threshold. IEEE Transactions on Network and Service Management, 19(2), (2022) 1679-1689. https://doi.org/10.1109/TNSM.2022.3142254

M. Solanki, S. Chaudhari, VLMDALP: design of an efficient VARMA LSTM-based model for identification of DDoS attacks using application-level packet analysis. International Journal of Electronic Security and Digital Forensics, 17(1-2), (2025) 149-168. https://doi.org/10.1504/IJESDF.2025.143476

R. Alguliyev, R. Shikhaliyev, Computer Networks Cybersecurity Monitoring Based on Deep Learning Model," Security and Privacy, 8(1), (2025) e459. https://doi.org/10.1002/spy2.459

S. Kansal, Utilizing Deep Learning Techniques for Effective Zero-Day Attack Detection. Economic Sciences, 21(1), (2025) 246-257. https://doi.org/10.69889/m3jzbt24

Z. Xu, Deep Learning Based DDoS Attack Detection. in ITM Web of Conferences, 70, (2025) 03005. https://doi.org/10.1051/itmconf/20257003005

J. Yan, H. Zhou, W. Wang, Intelligent Network Element: A Programmable Switch Based on Machine Learning to Defend Against DDoS Attacks. Information Systems Frontiers, (2025) 1-20. https://doi.org/10.1007/s10796-024-10577-9

S. Aktar, A.Y. Nur, Towards DDoS attack detection using deep learning approach. Computers & Security, 129, (2023) 103251. https://doi.org/10.1016/j.cose.2023.103251

M. Mittal, K. Kumar, S. Behal, Deep learning approaches for detecting DDoS attacks: A systematic review. Soft computing, 27(18), (2023) 13039-13075. https://doi.org/10.1007/s00500-021-06608-1

M.A. Al-Shareeda, S. Manickam, M.A. Saare, DDoS attacks detection using machine learning and deep learning techniques: Analysis and comparison. Bulletin of Electrical Engineering and Informatics, 12(2), (2023) 930-939. https://doi.org/10.11591/eei.v12i2.4466

S. Hosseini, M. Azizi, The hybrid technique for DDoS detection with supervised learning algorithms. Computer Networks, 158, (2019) 35-45. https://doi.org/10.1016/j.comnet.2019.04.027

V. Hnamte, A.A. Najar, H. Nhung-Nguyen, J. Hussain, M.N. Sugali, DDoS attack detection and mitigation using deep neural network in SDN environment. Computers & Security, 138, (2024) 103661. https://doi.org/10.1016/j.cose.2023.103661

D. Krishnan, S. Hemamalini, P. Cheraku, K. H. Priya, S. Ganesan, R. Balamanigandan, Attack detection using DL based feature selection with improved convolutional neural network. International Journal of Electrical and Electronics Research, 11(2), (2023) 308-314. https://ijeer.forexjournal.co.in/archive/volume-11/ijeer-110209.html

H. Aydın, Z. Orman, M. A. Aydın, A long short-term memory (LSTM)-based distributed denial of service (DDoS) detection and defense system design in public cloud network environment. Computers & Security, 118, (2022) 102725. https://doi.org/10.1016/j.cose.2022.102725

N.A. Bajao, J.a. Sarucam, Threats Detection in the Internet of Things Using Convolutional neural networks, long short-term memory, and gated recurrent units. Mesopotamian journal of cybersecurity, 2023, (2023) 22-29. https://doi.org/10.58496/MJCS/2023/005

D.M.B. Lent, M.P. Novaes, L.F. Carvalho, J. Lloret, J.J. Rodrigues, M.L. Proença, A gated recurrent unit deep learning model to detect and mitigate distributed denial of service and portscan attacks. IEEE Access, 10, (2022) 73229-73242. https://doi.org/10.1109/ACCESS.2022.3190008

A.E. Cil, K. Yildiz, A. Buldu, Detection of DDoS attacks with feed forward based deep neural network model. Expert Systems with Applications, 169, (2021) 114520. https://doi.org/10.1016/j.eswa.2020.114520

D. C. Le, N. Zincir-Heywood, M. I. Heywood, "Unsupervised monitoring of network and service behaviour using self-organizing maps. Journal of Cyber Security and Mobility, (2019) 15-52.

D. M. B. Lent, V. G. D. S. Ruffo, L. F. Carvalho, J. Lloret, J. J. Rodrigues, M. L. Proença, An Unsupervised Generative Adversarial Network System to Detect DDoS Attacks in SDN. IEEE Access, (2024) 70690-70706. https://doi.org/10.1109/ACCESS.2024.3402069

R.F. Fouladi, O. Ermiş, E. Anarim, A DDoS attack detection and countermeasure scheme based on DWT and auto-encoder neural network for SDN. Computer Networks, 214, (2022) 109140. https://doi.org/10.1016/j.comnet.2022.109140

X. Qu, L. Yang, K. Guo, L. Ma, M. Sun, M. Ke, M. Li, A survey on the development of self-organizing maps for unsupervised intrusion detection. Mobile networks and applications, 26, (2021) 808-829. https://doi.org/10.1007/s11036-019-01353-0

S. Velliangiri, H.M. Pandey, Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms. Future Generation Computer Systems, 110, (2020) 80-90. https://doi.org/10.1016/j.future.2020.03.049

M. Aamir, S.M.A. Zaidi, Clustering based semi-supervised machine learning for DDoS attack classification," Journal of King Saud University-Computer and Information Sciences, 33(4), (2021) 436-446. https://doi.org/10.1016/j.jksuci.2019.02.003

A.A. Samsu Aliar, M. Agoramoorthy, An automated detection of DDoS attack in cloud using optimized weighted fused features and hybrid DBN-GRU architecture. Cybernetics and Systems, 55(7), (2024) 1469-1510. https://doi.org/10.1080/01969722.2022.2157603

L. Chen, Z. Wang, R. Huo, T. Huang, An adversarial DBN-LSTM method for detecting and defending against DDoS attacks in SDN environments. Algorithms, 16(4), (2023) 197. https://doi.org/10.3390/a16040197

Y. Wei, J. Jang-Jaccard, F. Sabrina, A. Singh, W. Xu, S. Camtepe, Ae-mlp: A hybrid deep learning approach for ddos detection and classification. IEEE Access, 9, (2021) 146810-146821. https://doi.org/10.1109/ACCESS.2021.3123791

B. Hussain, Q. Du, B. Sun, Z. Han, Deep learning-based DDoS-attack detection for cyber–physical system over 5G network. IEEE Transactions on Industrial Informatics, 17(2), (2020) 860-870. https://doi.org/10.1109/TII.2020.2974520

M. Ramzan, M. Shoaib, A. Altaf, S. Arshad, F. Iqbal, Á.K. Castilla, I. Ashraf, Distributed denial of service attack detection in network traffic using deep learning algorithm. Sensors, 23(20), (2023) 8642. https://doi.org/10.3390/s23208642

M. Mittal, K. Kumar, S. Behal, DL-2P-DDoSADF: Deep learning-based two-phase DDoS attack detection framework. Journal of Information Security and Applications, 78, (2023) 103609. https://doi.org/10.1016/j.jisa.2023.103609

I. Ortega-Fernandez, M. Sestelo, J.C. Burguillo, C. Piñón-Blanco, Network intrusion detection system for DDoS attacks in ICS using deep autoencoders. Wireless Networks, 30, (2023) 1-17. https://doi.org/10.1007/s11276-022-03214-3

E. Benmohamed, A. Thaljaoui, S. El Khediri, S. Aladhadh, M. Alohali, DDoS attacks detection with half autoencoder-stacked deep neural network. International Journal of Cooperative Information Systems, 33(3), (2023) 2350025. https://doi.org/10.1142/S0218843023500259

A.K. Mousa, M.N. Abdullah, An improved deep learning model for DDoS detection based on hybrid stacked autoencoder and checkpoint network. Future Internet, 15(8), (2023) 278. https://doi.org/10.3390/fi15080278

E. Benmohamed, A. Thaljaoui, S. Elkhediri, S. Aladhadh, M. Alohali, E-SDNN: encoder-stacked deep neural networks for DDOS attack detection. Neural Computing and Applications, 36, (2024) 10431–10443. https://doi.org/10.1007/s00521-024-09622-0

R.K. Batchu, H. Seetha, A hybrid detection system for DDoS attacks based on deep sparse autoencoder and light gradient boost machine. Journal of Information & Knowledge Management, 22(1), (2023) 2250071. https://doi.org/10.1142/S021964922250071X

S. Balasubramaniam, C. Vijesh Joe, T.A. Sivakumar, A. Prasanth, K. Satheesh Kumar, V. Kavitha, R.K.Dhanaraj, Optimization enabled deep learning‐based ddos attack detection in cloud computing. International Journal of Intelligent Systems, 2023(1), (2023) 2039217. https://doi.org/10.1155/2023/2039217

C.M.V.S. Akana, A. Kumar, M. Tiwari, A.Z. Yunus, E. Vijayakumar, M. Singh, (2023) An Optimized DDoS Attack Detection Using Deep Convolutional Generative Adversarial Networks. International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE, India. https://doi.org/10.1109/ICIRCA57980.2023.10220745

A. Kandiero, P. Chiurunge, J. Munodawafa, Detection of DDoS Attacks Using Variational Autoencoder-Based Deep Neural Network. Privacy Preservation and Secured Data Storage in Cloud Computing: IGI Global, (2023) 365-404. https://doi.org/10.4018/979-8-3693-0593-5.ch017

U. Shrivastav, M. Kumar, S. Kumar, An Autoencoder-based Efficient Scheme for DDoS Detection. International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3), IEEE, India. https://doi.org/10.1109/IC2E357697.2023.10262806

M.A. Hossain M.S. Islam, Ensuring network security with a robust intrusion detection system using ensemble-based machine learning. Array, 19, (2023) 100306. https://doi.org/10.1016/j.array.2023.100306

Z. Hu, L. Wang, L. Qi, Y. Li, W. Yang, A novel wireless network intrusion detection method based on adaptive synthetic sampling and an improved convolutional neural network. IEEE Access, 8, (2020) 195741-195751. https://doi.org/10.1109/ACCESS.2020.3034015

R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del-Rincon, D. Siracusa, LUCID: A practical, lightweight deep learning solution for DDoS attack detection. IEEE Transactions on Network and Service Management, 17(2), (2020) 876-889. https://doi.org/10.1109/TNSM.2020.2971776

F.O. Catak, A.F. Mustacoglu, Distributed denial of service attack detection using autoencoder and deep neural networks. Journal of Intelligent & Fuzzy Systems, 37(3), (2019) 3969-3979. https://doi.org/10.3233/JIFS-190159

A. Thangasamy, B. Sundan, L. Govindaraj, A Novel Framework for DDoS Attacks Detection Using Hybrid LSTM Techniques. Computer Systems Science & Engineering, 45(3), (2023) 2553-2567. https://doi.org/10.32604/csse.2023.032078

A.A. Awad, A.F. Ali, T. Gaber, An improved long short term memory network for intrusion detection. Plos one, 18(8), (2023) e0284795. https://doi.org/10.1371/journal.pone.0284795

F. Laghrissi, S. Douzi, K. Douzi, B. Hssina, Intrusion detection systems using long short-term memory (LSTM). Journal of Big Data, 8(1), (2021) 65. https://doi.org/10.1186/s40537-021-00448-4

S. Sumathi, R. Rajesh, S. Lim, Recurrent and deep learning neural network models for DDoS attack detection. Journal of Sensors, (2022). https://doi.org/10.1155/2022/8530312

M.Z. Alom, T.M. Taha, Network intrusion detection for cyber security using unsupervised deep learning approaches. IEEE national aerospace and electronics conference (NAECON), IEEE, USA. https://doi.org/10.1109/NAECON.2017.8268746

R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat, S. Venkatraman, Deep learning approach for intelligent intrusion detection system. Ieee Access, 7 (2019) 41525-41550. https://doi.org/10.1109/ACCESS.2019.2895334

T. Su, H. Sun, J. Zhu, S. Wang, Y. Li, BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset. IEEE Access, 8 (2020) 29575-29585. https://doi.org/10.1109/ACCESS.2020.2972627

D. Akgun, S. Hizal, U. Cavusoglu, A new DDoS attacks intrusion detection model based on deep learning for cybersecurity. Computers & Security, 118, (2022) 102748. https://doi.org/10.1016/j.cose.2022.102748

S. Shende, S. Thorat, Long short-term memory (LSTM) deep learning method for intrusion detection in network security. International Journal of Engineering Research and Technology, 9(6), (2020). https://doi.org/10.17577/IJERTV9IS061016

Y. Imrana, Y. Xiang, L. Ali, Z. Abdul-Rauf, A bidirectional LSTM deep learning approach for intrusion detection. Expert Systems with Applications, 185, (2021) 115524. https://doi.org/10.1016/j.eswa.2021.115524

A. Halbouni, T.S. Gunawan, M.H. Habaebi, M. Halbouni, M. Kartiwi, R. Ahmad, CNN-LSTM: hybrid deep neural network for network intrusion detection system. IEEE Access, 10, (2022) 99837-99849. https://doi.org/10.1109/ACCESS.2022.3206425

T. Pooja, P. Shrinivasacharya, Evaluating neural networks using Bi-Directional LSTM for network IDS (intrusion detection systems) in cyber security. Global Transitions Proceedings, 2(2), (2021) 448-454. https://doi.org/10.1016/j.gltp.2021.08.017

H. Gwon, C. Lee, R. Keum, H. Choi, (2019) Network intrusion detection based on LSTM and feature embedding. arXiv preprint arXiv:1911.11552. https://doi.org/10.48550/arXiv.1911.11552

M.A. Khan, M.R. Karim, Y. Kim, A scalable and hybrid intrusion detection system based on the convolutional-LSTM network. Symmetry, 11(4), (2019) 583. https://doi.org/10.3390/sym11040583

A.T. Assy, Y. Mostafa, A. Abd El-khaleq, M. Mashaly, Anomaly-Based Intrusion Detection System using One-Dimensional Convolutional Neural Network. Procedia Computer Science, 220, (2023) 78-85. https://doi.org/10.1016/j.procs.2023.03.013

W. Elmasry, A. Akbulut, A.H. Zaim, Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic. Computer Networks, 168, (2020) 107042. https://doi.org/10.1016/j.comnet.2019.107042

Y. Zhang, Y. Zhang, N. Zhang, M. Xiao, A network intrusion detection method based on deep learning with higher accuracy. Procedia Computer Science, 174, (2020) 50-54. https://doi.org/10.1016/j.procs.2020.06.055

S.M. Kasongo, A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework. Computer Communications, 199, (2023) 113-125. https://doi.org/10.1016/j.comcom.2022.12.010

G.S.C. Kumar, R.K. Kumar, K.P.V. Kumar, N.R. Sai, M. Brahmaiah, Deep residual convolutional neural Network: An efficient technique for intrusion detection system. Expert Systems with Applications, 238, (2024) 121912. https://doi.org/10.1016/j.eswa.2023.121912

R.U. Khan, X. Zhang, M. Alazab, R. Kumar, (2019) An improved convolutional neural network model for intrusion detection in networks. Cybersecurity and cyberforensics conference (CCC), IEEE, Australia. https://doi.org/10.1109/CCC.2019.000-6

A. Abusitta, M. Bellaiche, M. Dagenais, T. Halabi, A deep learning approach for proactive multi-cloud cooperative intrusion detection system. Future Generation Computer Systems, 98, (2019) 308-318. https://doi.org/10.1016/j.future.2019.03.043

S. Al, M. Dener, STL-HDL: A new hybrid network intrusion detection system for imbalanced dataset on big data environment. Computers & Security, 110, (2021) 102435. https://doi.org/10.1016/j.cose.2021.102435

G. de Carvalho Bertoli, L. A. P. Junior, O. Saotome, A. L. dos Santos, Generalizing intrusion detection for heterogeneous networks: A stacked-unsupervised federated learning approach. Computers & Security, 127, (2023) 103106. https://doi.org/10.1016/j.cose.2023.103106

C. Ieracitano, A. Adeel, F.C. Morabito, A. Hussain, A novel statistical analysis and autoencoder driven intelligent intrusion detection approach. Neurocomputing, 387, (2020) 51-62. https://doi.org/10.1016/j.neucom.2019.11.016

I.O. Lopes, D. Zou, I.H. Abdulqadder, S. Akbar, Z. Li, F. Ruambo, W. Pereira, Network intrusion detection based on the temporal convolutional model. Computers & Security, 135, (2023) 103465. https://doi.org/10.1016/j.cose.2023.103465

S.V. Pingale, S.R. Sutar, Remora whale optimization-based hybrid deep learning for network intrusion detection using CNN features. Expert Systems with Applications, 210, (2022) 118476. https://doi.org/10.1016/j.eswa.2022.118476

A. Thakkar R. Lohiya, Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System. Information Fusion, 90, (2023) 353-363. https://doi.org/10.1016/j.inffus.2022.09.026

A. Alsirhani, M. M. Alshahrani, A.M. Hassan, A.I. Taloba, R.M. Abd El-Aziz, A.H. Samak, "Implementation of African vulture optimization algorithm based on deep learning for cybersecurity intrusion detection. Alexandria Engineering Journal, 79, (2023) 105-115. https://doi.org/10.1016/j.aej.2023.07.077

J. Lan, X. Liu, B. Li, J. Sun, B. Li, J. Zhao, MEMBER: A multi-task learning model with hybrid deep features for network intrusion detection. Computers & Security, 123, (2022) 102919. https://doi.org/10.1016/j.cose.2022.102919

F.E. Ayo, S.O. Folorunso, A.A. Abayomi-Alli, A.O. Adekunle, J.B. Awotunde, Network intrusion detection based on deep learning model optimized with rule-based hybrid feature selection. Information Security Journal: A Global Perspective, 29(6), (2020) 267-283. https://doi.org/10.1080/19393555.2020.1767240

Z. Li, C. Huang, W. Qiu, An intrusion detection method combining variational auto-encoder and generative adversarial networks. Computer Networks, (2024) 110724. https://doi.org/10.1016/j.comnet.2024.110724

S. Ur Rehman, M. Khaliq, S.I. Imtiaz, A. Rasool, M. Shafiq, A.R. Javed, Z. Jalil, A.K. Bashir, DIDDOS: An approach for detection and identification of Distributed Denial of Service (DDoS) cyberattacks using Gated Recurrent Units (GRU). Future Generation Computer Systems, 118, (2021) 453-466. https://doi.org/10.1016/j.future.2021.01.022

A.F. Al-zubidi, A.K. Farhan, S.M. Towfek, Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model. Journal of Intelligent Systems, 33(1), (2024) 20230195. https://doi.org/10.1515/jisys-2023-0195

P. Sun, P. Liu, Q. Li, C. Liu, X. Lu, R. Hao, J. Chen, DL‐IDS: Extracting Features Using CNN‐LSTM Hybrid Network for Intrusion Detection System. Security and communication networks, 2020(1), (2020) 8890306. https://doi.org/10.1155/2020/8890306

S.S. Bamber, A.V.R. Katkuri, S. Sharma, M. Angurala, A hybrid CNN-LSTM approach for intelligent cyber intrusion detection system. Computers & Security, 148, (2025) 104146. https://doi.org/10.1016/j.cose.2024.104146

D. Alghazzawi, O. Bamasag, H. Ullah, M. Z. Asghar, Efficient detection of DDoS attacks using a hybrid deep learning model with improved feature selection. Applied Sciences, 11(24), (2021) 11634. https://doi.org/10.3390/app112411634

B. Deore, S. Bhosale, Hybrid optimization enabled robust CNN-LSTM technique for network intrusion detection. Ieee Access, 10, (2022) 65611-65622. https://doi.org/10.1109/ACCESS.2022.3183213

J. Kaur, B.S. Khehra, A. Singh, Back propagation artificial neural network for diagnose of the heart disease. Journal of Reliable Intelligent Environments, 9(1), (2023) 57-85. https://doi.org/10.1007/s40860-022-00192-3

A.S.A. Issa, Z. Albayrak, DDoS attack intrusion detection system based on hybridization of CNN and LSTM. Acta Polytechnica Hungarica, 20(2), (2023) 105-123. https://doi.org/10.12700/APH.20.2.2023.2.6

Downloads

Published

2025-07-18

How to Cite

1.
G V, M J. Detection of Distributed Denial of Service Attacks Based on Deep Learning Approaches: A Survey, Taxonomy, and Challenges. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Jul. 18 [cited 2025 Dec. 5];7(4):146-6. Available from: https://asianrepo.org/index.php/irjmt/article/view/174