Hydrological Modeling and Evaluation of Water Balance Over the Complex Topography of Nile Basin Headwaters: The Case of Ghba River, Northern Ethiopia

Authors

  • Mehari Gebreyohannes Hiben School of Civil and Environmental Engineering, Addis Ababa University, Addis Ababa Institute of Technology (AAiT), Addis Ababa, Ethiopia Author https://orcid.org/0000-0003-3222-6285
  • Admasu Gebeyehu Awoke School of Civil and Environmental Engineering, Addis Ababa University, Addis Ababa Institute of Technology (AAiT), Addis Ababa, Ethiopia Author
  • Abraha Adugna Ashenafi The Ministry of Water and Energy, Addis Ababa, Ethiopia Author https://orcid.org/0000-0002-2031-2883

DOI:

https://doi.org/10.54392/irjmt2363

Keywords:

WEAP Model, Hydrology, Ghba subbasin, Groundwater

Abstract

Water resource evaluation, management, and conservation at the local, national, and international levels depend on an accurate understanding of the hydrological processes. In data-poor environments and topographically complicated areas like the Ghba subbasin in the headwaters of the Nile River, the function of hydrological models is crucial.  The primary goal of this study is to use the WEAP model to simulate the hydrology of the Ghba basin. This is because recent hydrological behaviour has changed significantly and resulted in a serious water deficit. The minimal satisfactory performance limit for the monthly stream flow variable was strongly attained by the multi-variable calibration scenario (R2 = 0.82, NSE = 0.82, IA= 0.80 RSR = 0.87 and PBIAS = 9 % for calibration scenario; and R2 = 0.78, NSE = 0.81, IA= 0.70 RSR = 0.80 and PBIAS = 11.5 % for validation scenario). Evapotranspiration makes up 63.4% of the water balance, according to the model simulation, while surface runoff, interflow, baseflow and groundwater recharge accounting for 11.1 %, 11.8%, 5.4% and 8.3 %, respectively. The simulated average annual streamflow at the subbasin outlet is 16.33 m3/s. The simulated monthly minimum flow occurs in January with an average flow of 1.78 m3/s and a coefficient of dispersion of 0.45. Maximum flows occur in July and August, with an average flow of 53.57 m3/s and a coefficient of dispersion of 0.19. The main rainy season was shown to have a larger spatial distribution of simulated runoff, and the average annual recharge value is 53.5 mm. The study's conclusions indicated that both surface water harvesting and groundwater extraction might be used for reliable water distribution to the subbasin's continuously increasing sectoral water demand.

References

T.G. Gebremicael, M.J. Deitch, H.N. Gancel, A.C. Croteau, G.G. Haile, A.N. Beyene, L. Kumar, Satellite-based rainfall estimates evaluation using a parsimonious hydrological model in the complex climate and topography of the Nile River Catchments, Atmospheric Research, 266 (2022) 105939. https://doi.org/10.1016/j.atmosres.2021.105939

M.G. Hiben, A.G. Awoke, A.A. Ashenafi, Estimation of Current Water Use over the Complex Topography of the Nile Basin Headwaters: The Case of Ghba Subbasin, Ethiopia. Advances in Civil Engineering, (2022) 7852100. https://doi.org/10.1155/2022/7852100

S.K. Weldegebriel, K.J.S. Yeshitela, Measuring the Semi-Century Ecosystem-Service Value Variation in Mekelle City Region, Northern Ethiopia. 13 (2021) 10015. https://doi.org/10.3390/su131810015

T.G. Gebremicael, (2019) Understanding the impact of human interventions on the hydrology of Nile Basin headwaters, the case of Upper Tekeze catchments, CRC Press, London. https://doi.org/10.1201/9780367853167

O. Tsvetkova, T.O. Randhir, Spatial and temporal uncertainty in climatic impacts on watershed systems, Science of the Total Environment, 687 (2019) 618-33. https://doi.org/10.1016/j.scitotenv.2019.06.141

A. Bhaskar, L. Beesley, M.J. Burns, T.D. Fletcher, P. Hamel, C. Oldham, A.H. Roy, Will it rise or will it fall? Managing the complex effects of urbanization on base flow, Freshwater Science, 35 (2016) 293-310. https://doi.org/10.1086/685084

Y. Tian, Y. Zheng, B. Wu, X. Wu, J. Liu, C.J.E.M. Zheng, Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture, Environmental Modelling & Software, 63 (2015) 170-84. https://doi.org/10.1016/j.envsoft.2014.10.011

S.J. Burian, C.A. Pomeroy, Urban impacts on the water cycle and potential green infrastructure implications, Urban Ecosystem Ecology, 55 (2010) 277-296.

M.G. Hiben, A.G. Awoke, A.A. Ashenafi, Homogeneity and change point detection of hydroclimatic variables: A case study of the Ghba River Subbasin, Ethiopia, Journal of Geography & Cartography, 6 (2023) 1-19. https://doi.org/10.24294/jgc.v6i1.2010

J.C. Lehrter, Effects of land use and land cover, stream discharge, and interannual climate on the magnitude and timing of nitrogen, phosphorus, and organic carbon concentrations in three coastal plain watersheds, Journal Water Environment Research, 78 (2006) 2356-2368. https://doi.org/10.2175/106143006X102015

A.Y.M. Abdullah, A. Masrur, M.S.G. Adnan, M.Al.A. Baky, Q.K. Hassan, Ashraf Dewan, Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017, Journal of Remote Sensing, 11 (2019) 790. https://doi.org/10.3390/rs11070790

A. Al Kafy, A. Al- Faisal, A. Al Rakib, S. Roy, J. Ferdousi, V. Raikwar, M.A. Kona, S.M. Abdullah Al Fatin, Predicting changes in land use/land cover and seasonal land surface temperature using multi-temporal landsat images in the northwest region of Bangladesh, Heliyon, 7 (2021) 07623. https://doi.org/10.1016/j.heliyon.2021.e07623

M. Manfren, N. Aste, R. Moshksar, Calibration and uncertainty analysis for computer models–a meta-model based approach for integrated building energy simulation, Journal Applied Energy, 103 (2013) 627-641. https://doi.org/10.1016/j.apenergy.2012.10.031

S. Greenland, Connecting simple and precise P-values to complex and ambiguous realities (includes rejoinder to comments on “Divergence vs. decision P-values”), Scandinavian Journal of Statistics, 50 (2023) 899-914. https://doi.org/10.1111/sjos.12645

M. Abbott, Chapter 16 - The theory of the hydrologic model, or: the struggle for the soul of hydrology. Advances in theoretical hydrology Elsevier, (1992) 237-254. https://doi.org/10.1016/B978-0-444-89831-9.50023-5

R.K. Price, (2011) Urban hydroinformatics: data, models, and decision support for integrated urban water management, IWA publishing, UK.

I.G. Pechlivanidis, B.M. Jackson, N.R. Mcintyre, H.S. Wheater, Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications, Global Nest Journal, 13 (2011) 193-214. https://doi.org/10.30955/gnj.000778

H. Gao, J.L. Sabo, X. Chen, Z. Liu, Z. Yang, Z. Ren, M. Liu, Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models, Journal Landscape ecology, 33 (2018) 1461-1480. https://doi.org/10.1007/s10980-018-0690-4

B. Li, T. Sun, F. Tian, G. Ni, Enhancing process-based hydrological models with embedded neural networks: A hybrid approach, Journal of Hydrology, 625 (2023) 130107. https://doi.org/10.1016/j.jhydrol.2023.130107

Y. Guo, Y. Zhang, L. Zhang, Z.W. Wang, Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review, John Wiley & Sons Interdisciplinary Reviews: Water, 8 (2021) e1487. https://doi.org/10.1002/wat2.1487

C. Sezen, N. Bezak, Y. Bai, M. Sraj, Hydrological modelling of karst catchment using lumped conceptual and data mining models, Journal of Hydrology, 576 (2019) 98-110. https://doi.org/10.1016/j.jhydrol.2019.06.036

B. Getachew, B.R. Manjunatha, H.G. Bhat, Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia, Journal of Hydrology, 595 (2021) 125974. https://doi.org/10.1016/j.jhydrol.2021.125974

P. Munoth, R. Goyal, Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India, International Journal of River Basin Management, 18 (2020) 177-189. https://doi.org/10.1080/15715124.2019.1613413

D.F. Mekonnen, Z. Duan, T. Rientjes, M.J.H. Disse, Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin's streamflow, Journal Hydrology Earth System Sciences, 22 (2018) 6187-6207. https://doi.org/10.5194/hess-22-6187-2018

M.G. Hiben, A.G. Awoke, A.A. Ashenafi, Estimation of rainfall and streamflow missing data under uncertainty for Nile basin headwaters: the case of Ghba catchments, Journal of Applied Water Engineering & Research, (2023) 1-15. https://doi.org/10.1080/23249676.2023.2230892

M. Jajarmizadeh, S. Harun, M. Salarpour, A review on theoretical consideration and types of models in hydrology, Journal of Environmental Science and Technology, 5 (2012) 249-261.

G.K. Devia, B.P. Ganasri, G.S. Dwarakish, A review on hydrological models, Jounals Aquatic procedia, 4 (2015)1001-1007. https://doi.org/10.1016/j.aqpro.2015.02.126

G.E. Guzey, B. Onoz, Performance Assessment Comparison between Physically Based and Regression Hydrological Modelling: Case Study of the Euphrates–Tigris Basin, Journal Sustainability, 15 (2023) 10657. https://doi.org/10.3390/su151310657

R.D. Pina, S. Ochoa-Rodriguez, N.E. Simoes, A. Mijic, A.S. Marques, C.J.W. Maksimovic. Semi-vs. Fully-distributed urban storm water models: model set up and comparison with two real case studies, Water, 8 (2016) 58. https://doi.org/10.3390/w8020058

V.Y. Ivanov, E.R. Vivoni, R.L. Bras, D. Entekhabi, Catchment hydrologic response with a fully distributed triangulated irregular network model, Water Resources Research, 40 (2004). https://doi.org/10.1029/2004WR003218

D.P. Solomatine, D.L. Shrestha, A novel method to estimate model uncertainty using machine learning techniques, Water Resources Research, 45 (2009). https://doi.org/10.1029/2008WR006839

T. Gebremicael, Y. Mohamed, P. Van der Zaag, Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of the Total Environment, 660 (2019) 1155-1167. https://doi.org/10.1016/j.scitotenv.2019.01.085

T. Sawunyama, (2008) Evaluating uncertainty in water resources estimation in southern Africa: A case study of South Africa, Rhodes University.

A. Ko, G. Mascaro, E.R. Vivoni, Strategies to improve and evaluate physics‐based hyperresolution hydrologic simulations at regional basin scales, Journal Water Resources Research, 55 (2019) 1129-1152. https://doi.org/10.1029/2018WR023521

M. Sulis, C. Paniconi, M. Marrocu, D. Huard, D. Chaumont, Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions, Water Resources Research, 48 (2012). https://doi.org/10.1029/2012WR012304

DIH. MIKE HYDRO BASIN is developed by DHI, The Netherlans 2014.

J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Large area hydrologic modeling and assessment part I: model development1. JAWRA Journal of the American Water Resources Association, 34 (1998) 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

SEI. (1998) Water evaluation and planning system, WEAP, Stockholm Environmental Institute, Boston.

M.G. Hiben, A.G. Awoke, A.A. Ashenafi, Hydroclimatic Variability, Characterization, and Long Term Spacio-Temporal Trend Analysis of the Ghba River Subbasin, Ethiopia, Advances in Meteorology, (2022) 3594641. https://doi.org/10.1155/2022/3594641

T.G. Gebremicael, Y.A. Mohamed, P.V. Zaag, E.Y. Hagos, Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē–Atbara river basin, Ethiopia, Hydrology and Earth System Sciences, 21 (2017) 2127-2142. https://doi.org/10.5194/hess-21-2127-2017

Mekelle, E. Ethiopian Institute of Technology-Mekelle, Mekelle University; 2017. Available at: https://www.researchgate.net/publication/338622745_LOCAL_CONSTRUCTION_MATERIALS_FOR_AFFORDABLE_HOUSING?

A. Zenebe, M. Vanmaercke, E. Guyassa, G. Verstraeten, J. Poesen, J. Nyssen, The Giba, Tanqwa and Tsaliet Rivers in the Headwaters of the Tekezze Basin, Geo-trekking in Ethiopia’s Tropical Mountains Springer, (2019) 215-30. https://doi.org/10.1007/978-3-030-04955-3_14

M. Hiben, T. Goitom, T. Berhanu, Sectoral water allocation in the Ghba sub-basin. Agricultural water management in Tigray Mekelle, Ethiopia Tigray Water Resource Bureau, (2016) 24.

G. Aredehey, A. Mezgebu, A. Girma, The effects of land use land cover change on hydrological flow in Giba catchment, Tigray, Ethiopia, Cogent Environmental Science, 6(1), (2020) 1785780. https://doi.org/10.1080/23311843.2020.1785780

K. Wang, E.G. Davies, J. Liu, Integrated water resources management and modeling: A case study of Bow river basin, Canada, Journal of Cleaner Production, 240 (2019) 118242. https://doi.org/10.1016/j.jclepro.2019.118242

S. Naghdi, O. Bozorg-Haddad, M. Khorsandi, X. Chu, Multi-objective optimization for allocation of surface water and groundwater resources, Science of the Total Environment, 776 (2021) 146026. https://doi.org/10.1016/j.scitotenv.2021.146026

M. Ben-Daoud, B. El Mahrad, I. Elhassnaoui, A. Moumen, A. Sayad, M. ELbouhadioui, Gabriela Adina Morosanu, Lhoussaine E. Mezouary, A. Essahlaoui, S. Eljaafari, Integrated water resources management: An indicator framework for water management system assessment in the R'Dom Sub-basin, Morocco, Environmental Challenges, 3 (2021) 100062. https://doi.org/10.1016/j.envc.2021.100062

M. Beniston, M. Stoffel, Assessing the impacts of climatic change on mountain water resources, Science of The Total Environment, 493 (2014) 1129-1137. https://doi.org/10.1016/j.scitotenv.2013.11.122

Z. Hu, L. Wang, Z. Wang, Y. Hong, H. Zheng, Quantitative assessment of climate and human impacts on surface water resources in a typical semi‐arid watershed in the middle reaches of the Yellow River from 1985 to 2006, International Journal of Climatology, 35 (2015) 97-113. https://doi.org/10.1002/joc.3965

A. Mehran, A. AghaKouchak, N. Nakhjiri, M.J. Stewardson, M.C. Peel, T.J. Phillips, Y. Wada, Jakin K. Ravalico, Compounding impacts of human-induced water stress and climate change on water availability, Scientific Reports, 7 (2017) 1-9. https://doi.org/10.1038/s41598-017-06765-0

A.G Bhave, D. Conway, S. Dessai, D.A. Stainforth, Water resource planning under future climate and socioeconomic uncertainty in the Cauvery River Basin in Karnataka, India, Water Resources Research, 54 (2018) 708-728. https://doi.org/10.1002/2017WR020970

X. Xiang, Q. Li, S. Khan, O.I. Khalaf, Urban water resource management for sustainable environment planning using artificial intelligence techniques, Environmental Impact Assessment Review, 86 (2021) 106515. https://doi.org/10.1016/j.eiar.2020.106515

X.T. Zeng, Y.P. Li, G.H. Huang, J. Liu, Modeling of water resources allocation and water quality management for supporting regional sustainability under uncertainty in an arid region, Water Resources Management, 31 (2017) 3699-3721. https://doi.org/10.1007/s11269-017-1696-4

M. Mulligan, WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrology Research, 44(5), (2013) 748-69. https://doi.org/10.2166/nh.2012.217

H. Liu, Y. Jia, C. Niu, H. Su, J. Wang, J. Du, M. Khaki, P. Hu, J. Liu, Development and validation of a physically-based, national-scale hydrological model in China, Journal of Hydrology, 590 (2020) 125431. https://doi.org/10.1016/j.jhydrol.2020.125431

M. Saber, T. Hamaguchi, T. Kojiri, K. Tanaka, T. Sumi, A physically based distributed hydrological model of wadi system to simulate flash floods in arid regions, Arabian Journal of Geosciences, 8 (2015) 143-160. https://doi.org/10.1007/s12517-013-1190-0

A.A. Ashenafi, (2014) Modeling hydrological responses to changes in land cover and climate in Geba River Basin, Northern Ethiopia. Freie Universitat Berlin, Berlin.

Bizuneh AJFU, (2021) Modeling the Effect of Climate and Land Use Change. Available at: https://www.researchgate.net/publication/351302859_Modeling_the_effect_of_climate_and_land_use_change_on_the_water_resources_in_Northern_Ethiopia_the_case_of_Suluh_River_Basin?

T.M. Tena, P. Mwaanga, A. Nguvulu, Hydrological modelling and water resources assessment of Chongwe River Catchment using WEAP model, Water, 11 (2019) 839. https://doi.org/10.3390/w11040839

I. McNamara, A. Nauditt, M. Zambrano-Bigiarini, L. Ribbe, H. Hann, Modelling water resources for planning irrigation development in drought-prone southern Chile, International Journal of Water Resources Development, 37 (2021) 793-818. https://doi.org/10.1080/07900627.2020.1768828

I.M. Johannsen, J.C. Hengst, A. Goll, B. Hollermann, B. Diekkruger, Future of water supply and demand in the Middle Draa Valley, Morocco, under climate and land use change, Water, 8 (2016) 313. https://doi.org/10.3390/w8080313

S. Javadinejad, K. Ostad-Ali-Askari, S. Eslamian, Application of multi-index decision analysis to management scenarios considering climate change prediction in the Zayandeh Rud River Basin, Water Conservation Science and Engineering, 4 (2019) 53-70. https://doi.org/10.1007/s41101-019-00068-3

P. Kumar, R. Dasgupta, S. Dhyani, R. Kadaverugu, B.A. Johnson, S. Hashimoto, N. Sahu, R. Avtar, O. Saito, S. Chakraborty, B.K. Mishra, Scenario-Based Hydrological Modeling for Designing Climate-Resilient Coastal Water Resource Management Measures: Lessons from Brahmani River, Odisha, Eastern India, Journal of Sustainability, 13 (2021) 6339. https://doi.org/10.3390/su13116339

M. Karamouz, B. Ahmadi, Z. Zahmatkesh, Developing an agricultural planning model in a watershed considering climate change impacts, Journal of Water Resources Planning, 139 (2013) 349-363. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000263

E.H. Ellington, G. Bastille‐Rousseau, C. Austin, K.N. Landolt, B.A. Pond, E.E. Rees, N. Robar, D. L. Murray, Using multiple imputation to estimate missing data in meta‐regression, Methods in Ecology & Evolution, 6 (2015) 153-163. https://doi.org/10.1111/2041-210X.12322

J. Nyssen, A. Frankl, A. Zenebe, J. Deckers, J. Poesen, Development. Land management in the northern Ethiopian highlands: local and global perspectives; past, present and future, Land Degradation Development, 26 (2015) 759-64. https://doi.org/10.1002/ldr.2336

J. Nyssen, S. Tielens, T. Gebreyohannes, T. Araya, K. Teka, K. Degeyndt, K. Descheemaeker, K. Amare, M. Haile, A. Zenebe, N. Munro, K. Walraevens, K. Gebrehiwot, J. Poesen, A. Frankl, A. Tsegay, J. Deckers, Understanding spatial patterns of soils for sustainable agriculture in northern Ethiopia’s tropical mountains, Plos one, 14 (2019) e0224041. https://doi.org/10.1371/journal.pone.0224041

T.G. Gebremicael, Y.A. Mohamed, E. Hagos, Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē–Atbara river basin, Ethiopia, Hydrology and Earth System Sciences, 21 (2017) 2127-2142. https://doi.org/10.5194/hess-21-2127-2017

J. Nyssen, S. Tielens, T. Gebreyohannes, T. Araya, K. Teka, W. Johan Van de, K. Degeyndt, K. Descheemaeker, K. Amare, M. Haile, A. Zenebe, N. Munro, K. Walraevens, K. Gebrehiwot, J. Poesen, A. Frankl, A. Tsegay, J. Deckers, Understanding spatial patterns of soils for sustainable agriculture in northern Ethiopia’s tropical mountains, PLOS ONE, 14 (2019) e0224041. https://doi.org/10.1371/journal.pone.0224041

M. Behailu, N. Tadesse, A. Legesse, D. Teklu, (2004) Community based irrigation management in the Tekeze basin: Performance evaluation of small scale irrigation schemes, Mekelle University, Ethiopia.

F. Hagos, J. Pender, N. Gebreselassie, (2002) Land degradation and strategies for sustainable land management in the Ethiopian highlands. International Livestock Research Institute, 73.

S.K. Weldegebriel, K.J.S. Yeshitela, Measuring the Semi-Century Ecosystem-Service Value Variation in Mekelle City Region, Northern Ethiopia, Sustainability, 13 (2021)10015. https://doi.org/10.3390/su131810015

P. Scull, J. Franklin, O.A. Chadwick, D. McArthur, Predictive soil mapping: a review. Progress in Physical geography, 27 (2003) 171-97. https://doi.org/10.1191/0309133303pp366ra

W. Bedada, (2015) Compost and fertilizer-alternatives or complementary?. SLU publication database (SLU pub)

Hurni H. Soil formation rates in Ethiopia (with scale 1: 1 000 000). 1983.

N.H. Batjes ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2). ISRIC-World Soil Information; 2012.

D.W. Goshime, A.T. Haile, T. Rientjes, R. Absi, B. Ledésert, T. Siegfried, Implications of water abstraction on the interconnected Central Rift Valley Lakes sub-basin of Ethiopia using WEAP. Journal of Hydrology: Regional Studies, 38 (2021) 100969. https://doi.org/10.1016/j.ejrh.2021.100969

A. Amin, J. Iqbal, A. Asghar, L. Ribbe, Analysis of current and future water demands in the Upper Indus Basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP model, Water, 10 (2018) 537. https://doi.org/10.3390/w10050537

E. Nkiaka, N. Nawaz, J.C. Lovett, Assessment R. Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: a case study in the Logone catchment, Lake Chad basin, Stochastic Environmental Research, 32 (2018) 1665-1682. https://doi.org/10.1007/s00477-017-1466-0

T.J.G. Sirisena, S. Maskey, R. Ranasinghe, Hydrological model calibration with streamflow and remote sensing based evapotranspiration data in a data poor basin, Remote sensing, 12 (2020) 3768. https://doi.org/10.3390/rs12223768

D. Espejel-Garcia, J. A. Saniger-Alba, G. Wenglas-Lara, V.V. Espejel-Garcia, A. Villalobos-Aragon, A comparison among manual and automatic calibration methods in VISSIM in an Expressway (Chihuahua, Mexico), Open Journal of Civil Engineering, 7 (2017) 539-552. https://doi.org/10.4236/ojce.2017.74036

F. Pianosi, K. Beven, J. Freer, J.W. Hall, J. Rougier, D.B. Stephenson, T. Wagener, Sensitivity analysis of environmental models: A systematic review with practical workflow, Environmental Modelling & Software, 79 (2016) 214-232. https://doi.org/10.1016/j.envsoft.2016.02.008

J. Gou, C. Miao, Q. Duan, Q. Tang, Z. Di, W. Liao, J. Wu, Sensitivity analysis‐based automatic parameter calibration of the VIC model for streamflow simulations over China, Water Resources Research, 56 (2020) e2019WR025968. https://doi.org/10.1029/2019WR025968

D. Abera Abdi, T. Ayenew, Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia, Ecological processes, 10 (2021)1-14. https://doi.org/10.1186/s13717-021-00305-5

S.M. Jalilov, M. Kefi, P. Kumar, Y. Masago, B.K. Mishra, Sustainable urban water management: Application for integrated assessment in Southeast Asia, Journal of Sustainability, 10 (2018)122. https://doi.org/10.3390/su10010122

M.G. Hiben, G. Di Baldassarre, A. Van Griensven, Can We Model Floodplain Inundation Patterns in Data-Scarce Areas?. Ethiopian Journal of Water Science and Technology, 3 (2020) 111-129. https://doi.org/10.59122/135811F

A. Ritter, R. Munoz-Carpena, Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments, Journal of Hydrology, 480 (2013) 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004

A.W. Wood, J.C. Schaake, Correcting errors in streamflow forecast ensemble mean and spread, Journal of Hydrometeorology, 9 (2008) 132-148. https://doi.org/10.1175/2007JHM862.1

M. A. Faiz, D. Liu, Q. Fu, M. Li, F. Baig, A. A. Tahir, M.I. Khan, T. Li, S. Cui, Performance evaluation of hydrological models using ensemble of General Circulation Models in the northeastern China, Journal of Hydrology, 565 (2018) 599-613.

D.A. Abdi, T. Ayenew, Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia, Ecological Processes, 10 (2021) 1-14. https://doi.org/10.1186/s13717-021-00305-5

J. Craven, H. Angarita, G.A.C. Perez, D. Vasquez, Development and testing of a river basin management simulation game for integrated management of the Magdalena-Cauca river basin, Environmental modelling software, 90 (2017) 78-88. https://doi.org/10.1016/j.envsoft.2017.01.002

A. Abrishamchi, H. Alizadeh, M. Tajrishy, A. Abrishamchi, Water resources management scenario analysis in Karkheh River Basin, Iran, using WEAP model, Hydrological Science and Technology, 23 (2007) 1.

M. Simard, N. Pinto, J.B. Fisher, A. Baccini, Mapping forest canopy height globally with spaceborne lidar, Journal of Geophysical Research: Biogeosciences, 116 (2011). https://doi.org/10.1029/2011JG001708

D. Weindorf, Y. Zhu, Spatial variability of soil properties at Capulin volcano, New Mexico, USA: Implications for sampling strategy, Pedosphere, 20 (2010) 185-197. https://doi.org/10.1016/S1002-0160(10)60006-9

D.R. Legates, J.G. McCabe, Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation, Water Resources Research, 35 (1999) 233-241. https://doi.org/10.1029/1998WR900018

A. Noori, H. Bonakdari, M. Hassaninia, K. Morovati, I. Khorshidi, A. Noori, B. Gharabaghi, A reliable GIS-based FAHP-FTOPSIS model to prioritize urban water supply management scenarios: A case study in semi-arid climate, Sustainable Cities and Society, 81 (2022), 103846. https://doi.org/10.1016/j.scs.2022.103846

T. Olsson, M. Kämäräinen, D. Santos, T. Seitola, H. Tuomenvirta, R. Haavisto, W. Lavado-Casimiro, Downscaling climate projections for the Peruvian coastal Chancay-Huaral Basin to support river discharge modeling with WEAP, Journal of Hydrology: Regional Studies, 13 (2017) 26-42. https://doi.org/10.1016/j.ejrh.2017.05.011

A. Noori, H. Bonakdari, K. Morovati, B. Gharabaghi, Development of optimal water supply plan using integrated fuzzy Delphi and fuzzy ELECTRE III methods—Case study of the Gamasiab basin, Expert Systems, 37(5) (2020) e12568. https://doi.org/10.1111/exsy.12568

Q. Sun, C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, K-L. Hsu, A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Reviews of Geophysics, 56(1), (2018) 79-107. https://doi.org/10.1002/2017RG000574

D. Kavetski, G. Kuczera, S.W. Franks, Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resources Research, 42(3), (2006). https://doi.org/10.1029/2005WR004376

MA. Gebremedhin, (2019) Spatio-temporal water resource responses to land use land cover change in semi-arid Opper Tekeze Basin, Northern Ethiopia, University of Twente The Netherlands.

E. Schmidt, B. Zemadim, (2013) Hydrological modelling of sustainable land management interventions in the Mizewa watershed of the Blue Nile basin, NBDC Technical Report.

T. Gebreyohannes, F. De Smedt, K. Walraevens, S. Gebresilassie, A. Hussien, M. Hagos, K. Amare, J. Deckers, K. Gebrehiwot, Regional groundwater flow modeling of the Geba basin, northern Ethiopia, Hydrogeology Journal, 25(2017) 639-655. https://doi.org/10.1007/s10040-016-1522-8

T. Gebreyohannes, F. De Smedt, K. Walraevens, S. Gebresilassie, A. Hussien, M. Hagos, K. Amare, J.Deckers, K. Gebrehiwot, Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia, Journal of Hydrology, 499 (2013) 110-123. https://doi.org/10.1016/j.jhydrol.2013.06.026

Downloads

Published

2023-11-03

How to Cite

Hiben, M.G., Awoke, A.G. and Ashenafi, A.A. (2023) “Hydrological Modeling and Evaluation of Water Balance Over the Complex Topography of Nile Basin Headwaters: The Case of Ghba River, Northern Ethiopia”, International Research Journal of Multidisciplinary Technovation, 5(6), pp. 19–42. doi:10.54392/irjmt2363.