Exploration of Solvent Effects, Structural and Spectroscopic Properties, Chemical Shifts, Bonding Nature, Reactive Sites and Molecular Docking Studies on 3-Chloro-2,6-Difluoropyridin-4-Amine as a Potent Antimicrobial Agent

Authors

  • Kavi Karunya S PG and Research Department of Microbiology, Shanmuga Industries Arts and Science College, Tiruvannamalai-606603, Tamil Nadu, India. Author https://orcid.org/0009-0003-4667-4393
  • Jagathy K PG and Research Department of Microbiology, Sri Akilandeswari Women's College, Wandiwash, Tiruvannamalai-604408, Tamil Nadu, India Author https://orcid.org/0000-0002-5536-7825
  • Anandaraj K PG and Research Department of Microbiology, Shanmuga Industries Arts and Science College, Tiruvannamalai-606603, Tamil Nadu, India. Author
  • Pavithra C PG and Research Department of Physics, Marudhar Kesari Jain College for Women, Vaniyambadi-635751, Tamil Nadu, India Author https://orcid.org/0000-0003-0706-0586
  • Manjula R PG and Research Department of Physics, Marudhar Kesari Jain College for Women, Vaniyambadi-635751, Tamil Nadu, India Author https://orcid.org/0009-0001-2304-3420

DOI:

https://doi.org/10.54392/irjmt2419

Keywords:

Pyridine Derivative, DFT, Solvent effect, Molecular docking, DNA Gyrase

Abstract

This study delved into the electronic structure of Pyridine derivative 3-Chloro-2,6-difluoropyridin-4-amine (3C26D4A) using quantum-chemical computational calculations and employing the DFT/B3LYP/6-311++G(d,p) method and basis set. Spectroscopic, electronic, Mulliken population analysis and molecular electrostatic potential surface (MESP) calculations were carried out to gain deeper insights, shedding light on their bonding characteristics and reactive sites. The simulated electronic and frontier molecular orbitals (FMO) energy gaps of 3C26D4A in both polar (aniline, DMSO and methanol) and nonpolar (CCl4, chloroform, cyclohexane and toluene) confirm the stability and chemical reactivity. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap of 3C26D4A in the gas phase is found to be 6.0214 eV and shows low reactivity and stability as compared to the solvent phase. In parallel, in silico molecular docking investigated their promise as antimicrobial agents by targeting key enzyme DNA gyrase. The obtained binding energy revealed a significant inhibitory potential docking score of -4.07 kcal/mol.

References

S.R. Alizadeh, M.A. Ebrahimzadeh, Antiviral Activities of Pyridine Fused and Pyridine Containing Heterocycles, a Review (from 2000 to 2020). Mini Reviews in Medicinal Chemistry, 21 (2021) 2584-2611. http://dx.doi.org/10.2174/1389557521666210126143558

E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M.D. Esrafili, New Page to Access Pyridine Derivatives: Synthesis from: N -Propargylamines. RSC Advances, 6 (2016) 71662-71675. https://doi.org/10.1039/C6RA08720E

G. Mohammad Abu-Taweel, M.M. Ibrahim, S. Khan, H.M. Al-Saidi, M. Alshamrani, F.A. Alhumaydhi, S.S. Alharthi, Medicinal importance and chemosensing applications of pyridine derivatives: a review. Critical Reviews in Analytical Chemistry, (2022) 1-18. https://doi.org/10.1080/10408347.2022.2089839

S.M. Gomha, Z.A. Muhammad, M.R. Abdel‐aziz, H.M. Abdel‐aziz, H.M. Gaber, M.M. Elaasser, One‐pot synthesis of new thiadiazolyl‐pyridines as anticancer and anti-oxidant agents. Journal of Heterocyclic Chemistry, 55 (2018) 530-536. https://doi.org/10.1002/jhet.3088

T. Li, J. Zhang, J. Pan, Z. Wu, D. Hu, B. Song, Design, synthesis, and antiviral activities of 1, 5-benzothiazepine derivatives containing pyridine moiety. European journal of medicinal chemistry, 125 (2017) 657-662. https://doi.org/10.1016/j.ejmech.2016.09.069

Y. Hu, J. Zhang, C. Yu, Q. Li, F. Dong, G. Wang, Z. Guo, Synthesis, characterization, and anti-oxidant properties of novel inulin derivatives with amino-pyridine group. International journal of biological macromolecules, 70 (2014) 44-49. https://doi.org/10.1016/j.ijbiomac.2014.06.024

M. Taha, N.H. Ismail, S. Imran, H. Rashwan, W. Jamil, S. Ali, S.M. Kashif, F. Rahim, U. Salar, K.M. Khan, Synthesis of 6-chloro-2-Aryl-1H-imidazo [4, 5-b] pyridine derivatives: anti-diabetic, anti-oxidant, β-glucuronidase inhibiton and their molecular docking studies. Bioorganic chemistry, 65 (2016) 48-56. https://doi.org/10.1016/j.bioorg.2016.01.007

K.H. Alharbi, A review on organic colorimetric and fluorescent chemosensors for the detection of Zn (II) ions. Critical Reviews in Analytical Chemistry, 53 (2023) 1472-1488. https://doi.org/10.1080/10408347.2022.2033611

D. Mohanasundaram, R. Bhaskar, M. Sankarganesh, K. Nehru, G.G.V. Kumar, J. Rajesh, A simple pyridine based fluorescent chemosensor for selective detection of copper ion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 265 (2022) 120395. https://doi.org/10.1016/j.saa.2021.120395

V. Mukherjee, K. Singh, N.P. Singh, R.A. Yadav, FTIR and Raman spectra and SQM force field calculation for vibrational analysis of 2, 3, 4-and 2, 3, 6-tri-fluoro-anilines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73 (2009) 44-53. https://doi.org/10.1016/j.saa.2009.01.024

G.S. Kurkcuoglu, I. Kavlak, T. Arslan, C. Ogretir, Theoretical studies on the molecular structure and vibrational spectra of some dimethyl substituted pyridine derivatives. Journal of molecular modeling, 15 (2009) 79-90. https://doi.org/10.1007/s00894-008-0368-y

D. Gandolfo, J. Zarembowitch, Apport de la coordination des hétérocycles a la connaissance de leurs spectres infrarouge et Raman. III—spectres de la méthyl-3 pyridine. Spectrochimica Acta Part A: Molecular Spectroscopy, 33 (1997) 615-623. https://doi.org/10.1016/0584-8539(77)80136-0

J.F. Arenas, I.L. Tocon, J.C. Otero, J.I. Marcos, Vibrational spectra of methylpyridines. Journal of molecular structure, 476 (1999) 139-150. https://doi.org/10.1016/S0022-2860(98)00541-9

M. Salman, P. Sharma, M. Kumar, A.S. Ethayathulla, P. Kaur, Targeting novel sites in DNA gyrase for development of anti-microbials, Briefing Functional Genomics. 22 (2023) 180-194. https://doi.org/10.1093/bfgp/elac029

A.C. Spencer, S.S. Panda, DNA Gyrase as a Target for Quinolones. Biomedicines, 11 (2023) 371. https://doi.org/10.3390/biomedicines11020371

M.T. Muhammed, E. Aki-Yalcin, Computational insight into the mechanism of action of DNA gyrase inhibitors; revealing a new mechanism. Current Computer-Aided Drug Design, 20 (2024) 224-235. http://dx.doi.org/10.2174/1573409919666230419094700

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G. A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox (2009). GAUSSIAN09. Gaussian Inc. Wallingford, CT, USA.

W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical Review, 140 (1965) A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

A.D. Becke, Density functional thermo chemistry – III: The role of exact exchange. The Journal of Chemical Physics, 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, (1988) 785-789. https://doi.org/10.1103/PhysRevB.37.785

G.A Zhurko, & D.A. Zhurko, (2009) ChemCraft Program version 1.6 build 315.

W.J. Hehre, R. Ditchfield, J.A. Pople, Self-Consistent Molecular Orbital Meth- ods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56 (1972) 2257–2261. https://doi.org/10.1063/1.1677527

J.R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors. The Journal of Chemical Physics, 104 (1996) 5497–5509. https://doi.org/10.1063/1.471789

M. Petersilka, U.J. Gossman, E.K.U. Gross, Excitation energies from timedependent density-functional theory. Physical Review Letters, 76 (1966) 1212-1215. https://doi.org/10.1103/PhysRevLett.76.1212

E. Runge, E.K.U. Gross, Density functional theory for time-dependent systems. Physical Review Letters, 52 (1984) 997. https://doi.org/10.1103/PhysRevLett.52.997

W.L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein Crystallography, 40 (2002) 82-92.

R. Dennington, T. Keith, J. Millam, (2009) Gauss View, Version 5. Semichem Inc, Shawnee Mission.

G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30 (2009) 2785-2791. https://doi.org/10.1002/jcc.21256

A.C. Wallace, R.A. Laskowski, J.M. Thornton, LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Engineering design, and selection, 8 (1995)127-134. https://doi.org/10.1093/protein/8.2.127

Tamara A. Vaganova, Yurij V. Gatilov, Enrico Benassi, Igor P. Chuikov, Denis P. Pishchur, Evgenij V. Malykhin CCDC 1911495: Experimental Crystal Structure Determination. 2019, 10.5517/ccdc.csd.cc22524h

G. Serdaroglu, N. Uludag, N. Colak, P. Rajkumar, Nitrobenzamido substitution on thiophene-3-carboxylate: Electrochemical investigation, antioxidant activity, molecular docking, DFT calculations. Journal of Molecular Structure, 1271 (2023) 134030. https://doi.org/10.1016/j.molstruc.2022.134030

S. Selvaraj, A. Ram Kumar, T. Ahilan, M. Kesavan, G. Serdaroglu, P. Rajkumar, M. Mani, S. Gunasekaran, S. Kumaresan, Experimental and Theoretical Spectroscopic Studies of the Electronic Structure of 2-Ethyl-2-phenylmalonamide. Physical Chemistry Research, 10 (2022) 333-344.

P. Wojciechowski, K. Helios, D. Michalska, Theoretical anharmonic Raman and infrared spectra with vibrational assignments for monofluoroaniline isomers. Vibrational Spectroscopy, 57 (2011) 126-134. https://doi.org/10.1016/j.vibspec.2011.06.001

P. Rajkumar, S. Selvaraj, R. Suganya, M. Kesavan, G. Serdaroglu, S. Gunasekaran, S.Kumaresan, Experimental and theoretical investigations on electronic structure of 5-(hydroxymethyl)-2-furaldehyde: An antisickling agent identified from Terminalia bellirica. Chemical Data Collections, 29, (2020) 100498. https://doi.org/10.1016/j.cdc.2020.100498

A. Ram Kumar, S. Selvaraj, G.S. Mol, M. Selvaraj, L. Ilavarasan, S.K. Pandey, P. Jayaprakash, S. Awasthi, O. Albormani, A. Ravi, Synthesis, solvent-solute interactions (polar and nonpolar), spectroscopic insights, topological aspects, Fukui functions, molecular docking, ADME, and donor-acceptor investigations of 2-(trifluoromethyl) benzimidazole: A promising candidate for antitumor pharmacotherapy. Journal of Molecular Liquids, 393, (2024) 123661. https://doi.org/10.1016/j.molliq.2023.123661

S. Seshadri, S. Gunasekaran, S. Muthu, S. Kumaresan, R. Arun Balaji, Vibrational spectroscopy investigation using ab initio and density functional theory on flucytosine. Journal Raman Spectroscopy, 38(11), (2007) 1523-1531. https://doi.org/10.1002/jrs.1808

S. Gunasekaran, K. Rajalakshmi, S. Kumaresan, Vibrational analysis, electronic structure and nonlinear optical properties of Levofloxacin by density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, (2013) 351-363. https://doi.org/10.1016/j.saa.2013.04.074

A. Ram Kumar, S. Selvaraj, P. Anthoniammal, R.J. Ramalingam, B. Ranjith, P. Jayaprakash, G.P. Sheeja Mol, Comparison of spectroscopic, structural, and molecular docking studies of 5-nitro-2-fluoroaniline and 2-nitro-5-fluoroaniline: An attempt on fluoroaniline isomers. Journal of Fluorine Chemistry, 270, (2023) 110167. https://doi.org/10.1016/j.jfluchem.2023.110167

M. Karabacak, E. Kose, E.B. Sas, M. Kurt, A.M. Asiri, A. Atac, DFT calcula- tions and experimental FT-IR, FT-Raman, NMR, UV–Vis spectral studies of 3- fluorophenylboronic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136 (2015) 306-320. https://doi.org/10.1016/j.saa.2014.08.141

R.V. Kabilan, C. Arunagiri, G.R. Ramkumaar, K. Sathyamoorthy, C. Karnan, Combined experimental and theoretical investigations on 9-[3, 4-dihydroxy-5-(hydroxymethyl) oxolan-2-yl]-1, 9-dihydro-6H-purin-6-one 4-nitrophenol (IPNP) molecule. Journal of Molecular Structure, 1263, (2022) 133020. https://doi.org/10.1016/j.molstruc.2022.133020

A. Gokila, Comprehensive understanding of Methyl 2-Naphthyl Ether Molecule by Ab Initio Calculation method. International Research Journal of Multidisciplinary Technovation, 5(1), (2023) 19-33. https://doi.org/10.54392/irjmt2323

A. Mohamed Ibrahim, S. Arunachalam, J. Suryakanth, M. Velayutham Pillai, A Quantum Chemical and Nonlinear Optical Investigation on L-Tryptophan Hydrochloride Single Crystals for Optoelectronic Device Applications. International Research Journal of Multidisciplinary Technovation, 5(4), (2023) 20-26, https://doi.org/10.54392/irjmt2343

M. Prabhaharan, A.R. Prabakaran, S. Gunasekaran, S. Srinivasan, Molecular structure and vibrational spectroscopic investigation of melamine using DFT theory calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123, (2014) 392-401. https://doi.org/10.1016/j.saa.2013.12.056

S. Selvaraj, Computational study on the structural features, vibrational aspects, chemical shifts, and electronic properties of 1,4- Dinitrosopiperazine-2-carboxylic acid: Insights into donor-acceptor interactions and thermodynamic properties. International Research Journal of Multidisciplinary Technovation, 6(1), (2024) 1-16. https://doi.org/10.54392/irjmt2411

C. Karnan, K.S. Nagaraja, S. Manivannan, A. Manikandan, V. Ragavendran, Crystal structure, spectral investigations, DFT and antimicrobial activity of brucinium benzilate (BBA). Journal of Molecular Modeling, 27, (2021) 1-11. https://doi.org/10.1007/s00894-021-04842-w

E. Dhanalakshmi, P. Rajesh, S. Suresh, M. Priyadharshini, M. Prabhaharan, Green synthesis, spectroscopic investigation, quantum chemical and molecular docking studies of 3-methylisoxazolo [4,5-b] pyridine. Journal of Molecular Structure, 1298, (2024) 136964. https://doi.org/10.1016/j.molstruc.2023.136964

Downloads

Published

2024-01-30

How to Cite

S, K.K. (2024) “Exploration of Solvent Effects, Structural and Spectroscopic Properties, Chemical Shifts, Bonding Nature, Reactive Sites and Molecular Docking Studies on 3-Chloro-2,6-Difluoropyridin-4-Amine as a Potent Antimicrobial Agent”, International Research Journal of Multidisciplinary Technovation, 6(1), pp. 109–127. doi:10.54392/irjmt2419.