A Short Review on the Growth of Lightweight Agronomic Surplus Biomass Composites for Ecological Applications Using Biopolymers

Authors

  • Velmurugan G Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-602105, Tamil Nadu, India. Author https://orcid.org/0000-0001-7324-280X
  • Jasgurpreet Singh Chohan Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Gharuan Mohali-140413, India Author https://orcid.org/0000-0002-3903-8589
  • Abhilakshmi M Institute of Agricultural Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India-602 105. Author
  • Harikaran S Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-602105, Tamil Nadu, India. Author
  • Shakthi dharshini M.B Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-602105, Tamil Nadu, India. Author
  • Sai Nithin C.H Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-602105, Tamil Nadu, India. Author

DOI:

https://doi.org/10.54392/irjmt24111

Keywords:

Biopolymers, Sustainable materials, Cellulose, Starch, Natural composites, Lightweight applications, Ecological Applications, Environmentally Friendly Composites

Abstract

The need to discover novel methods for creating sustainable materials is growing due to the depletion of the Earth's resources and increasing environmental concerns. Several studies have focused on the handling of agricultural waste in an attempt to mitigate the ecological issues associated with agricultural debris removal. Large volumes of agricultural waste are generated annually, posing a significant challenge from both ecological and financial perspectives. In alignment with the principles of a sustainable economy, such waste can be employed as supplementary ingredients to produce high-value goods. The utilization of organic waste from agriculture has become indispensable for the development of sustainable and lightweight biopolymer-based composites. This brief review delves into the expanding field of lightweight agronomic surplus biomass materials suitable for environmental applications. It places particular emphasis on the utilization of biopolymers in creating these materials. The study explores how agricultural waste biomass can be sustainably repurposed and transformed into eco-friendly composite materials. It examines the innovations, materials, and methods contributing to this ecological trend, with a focus on the potential environmental benefits. This review highlights the progress achieved in the development of these hybrids, drawing attention to the numerous ways in which environmentally friendly biopolymer-based materials can be utilized.

References

S. Nagappan, S.P. Subramani, S.K. Palaniappan, B. Mylsamy, Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites. Journal of Natural Fibers, 19 (2022) 6853–6864. https://doi.org/10.1080/15440478.2021.1932681

M. Ali, A. Alabdulkarem, A. Nuhait, K. Al-Salem, G. Iannace, R. Almuzaiqer, Characteristics of agro waste fibers as new thermal insulation and sound absorbing materials: Hybrid of date palm tree leaves and wheat straw fibers. Journal of Natural Fibers, 19 (2022) 6576–6594. https://doi.org/10.1080/15440478.2021.1929647

F. Ortega, F. Versino, O.V. López, M.A. García, Biobased composites from agro-industrial wastes and by-products. Emergent Materials, 5 (2022) 873–921. https://doi.org/10.1007/s42247-021-00319-x

V.S. Shankar, G. Velmurugan, D.E. Raja, T. Manikandan, S.S. Kumar, J. Singh, M. Nagaraj, A.J.P. Kumar, A Review on the Development of Silicon and Silica Based Nano Materials in the Food Industry. Silicon, (2023) 1–10. https://doi.org/10.1007/s12633-023-02748-1

G. Velmurugan, S.S. Kumar, J.S. Chohan, R. Sathish, S.P. Selvan, S.A.M. Abraar, D.E. Raja, M. Nagaraj, S. Palani, Hybrid calotropis gigantea fibre-reinforced epoxy composites with SiO2’s longer-term moisture absorbable and its impacts on mechanical and dynamic mechanical properties. Materials Research Express, 10 (2023) 115302. https://doi.org/10.1088/2053-1591/ad0bc8

A. Vinod, M.R. Sanjay, S. Siengchin, S. Fischer, Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: influence of surface modification techniques. Construction and Building Materials, 303 (2021) 124509. https://doi.org/10.1016/j.conbuildmat.2021.124509

A. Karimah, M.R. Ridho, S.S. Munawar, D.S. Adi, R. Damayanti, B. Subiyanto, W. Fatriasari, A. Fudholi, A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 13 (2021) 2442–2458. https://doi.org/10.1016/j.jmrt.2021.06.014

M.V. Madurwar, R.V. Ralegaonkar, S.A. Mandavgane, Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials, 38 (2013) 872–878. https://doi.org/10.1016/j.conbuildmat.2012.09.011

G. Velmurugan, S.S. Kumar, J.S. Chohan, A.J.P. Kumar, T. Manikandan, D.E. Raja, K. Saranya, M. Nagaraj, P. Barmavatu, Experimental Investigations of Mechanical and Dynamic Mechanical Analysis of Bio-synthesized CuO/Ramie Fiber-Based Hybrid Biocomposite. Fibers and Polymers, (2023) 1–20. https://doi.org/10.1007/s12221-023-00432-0

A. Verma, K. Joshi, A. Gaur, V.K. Singh, Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: Fabrication and experimental characterization. Journal of the Mechanical Behavior of Materials, 27 (2018) 1–16. https://doi.org/10.1515/jmbm-2018-2006

K.K. Sadasivuni, P. Saha, J. Adhikari, K. Deshmukh, M.B. Ahamed, J.J. Cabibihan, Recent advances in mechanical properties of biopolymer composites: a review. Polymer Composites, 41 (2020) 32–59. https://doi.org/10.1002/pc.25356

A. George, M.R. Sanjay, R. Srisuk, J. Parameswaranpillai, S. Siengchin, A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 154 (2020) 329–338. https://doi.org/10.1016/j.ijbiomac.2020.03.120

J.R. Robledo-Ortíz, A.S. Martín del Campo, J.A. Blackaller, M.E. González-López, A.A. Pérez Fonseca, Valorization of sugarcane straw for the development of sustainable biopolymer-based composites. Polymers, 13 (2021) 3335. https://doi.org/10.3390/polym13193335

G. Velmurugan, K. Babu, Statistical analysis of mechanical properties of wood dust filled Jute fiber based hybrid composites under cryogenic atmosphere using Grey-Taguchi method. Materials Research Express. 7 (2020). https://doi.org/10.1088/2053-1591/ab9ce9

P. Zarrintaj, F. Seidi, M.Y. Azarfam, M.K. Yazdi, A. Erfani, M. Barani, N.P.S. Chauhan, N. Rabiee, T. Kuang, J. Kucinska-Lipka, M.R. Saeb, M. Mozafari, Biopolymer-based composites for tissue engineering applications: A basis for future opportunities, Composites Part B: Engineering. 258 (2023) 110701. https://doi.org/10.1016/j.compositesb.2023.110701

R. Phiri, S.M. Rangappa, S. Siengchin, O.P. Oladijo, H.N. Dhakal, Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: a Review. Advanced Industrial and Engineering Polymer Research, 6 (2023) 436-450. https://doi.org/10.1016/j.aiepr.2023.04.004

S. Adjei, S. Elkatatny, A highlight on the application of industrial and agro wastes in cement-based materials. Journal of Petroleum Science and Engineering, 195 (2020) 107911. https://doi.org/10.1016/j.petrol.2020.107911

V. Ganesan, B. Kaliyamoorthy, Utilization of Taguchi Technique to Enhance the Interlaminar Shear Strength of Wood Dust Filled Woven Jute Fiber Reinforced Polyester Composites in Cryogenic Environment. Journal of Natural Fibers, (2020). https://doi.org/10.1080/15440478.2020.1789021

M. Matheswaran, P. Suresh, G. Velmurugan, M. Nagaraj, Evaluation of Agrowaste/Nanoclay/SiO2-Based Blended Nanocomposites for Structural Applications: Comparative Physical and Mechanical Properties, Silicon. 15 (2023) 7095–7108. https://doi.org/10.1007/s12633-023-02570-9

D. Arunkumar, A. Latha, S. Suresh Kumar, J.S. Chohan, G. Velmurugan & M. Nagaraj, Experimental Investigations of Flammability, Mechanical and Moisture Absorption Properties of Natural Flax / NanoSiO 2 Based Hybrid Polypropylene Composites. Silicon, 15 (2023) 7621–7637. https://doi.org/10.1007/s12633-023-02611-3

J. Li, X. Hao, W. Gan, M.C.M. van Loosdrecht, Y. Wu, Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation. Water Research, 205 (2021) 117706. https://doi.org/10.1016/j.watres.2021.117706

M. Mahamaya, S.K. Das, K.R. Reddy, S. Jain, Interaction of biopolymer with dispersive geomaterial and its characterization: An eco-friendly approach for erosion control. Journal of Cleaner Production, 312 (2021) 127778. https://doi.org/10.1016/j.jclepro.2021.127778

N.S.K. Gowthaman, H.N. Lim, T.R. Sreeraj, A. Amalraj, S. Gopi, Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. Biopolymers and their Industrial Applications, (2021) 351–372. https://doi.org/10.1016/B978-0-12-819240-5.00015-8

J. Joshi, S.V. Homburg, A. Ehrmann, Atomic force microscopy (AFM) on biopolymers and hydrogels for biotechnological applications-Possibilities and limits, Polymers. 14 (2022) 1267. https://doi.org/10.3390/polym14061267

S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D.J. Johnson, M. Shanmugam, A. Ayyanar, K. Naresh, R.E. Neisiany, O. Das, Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Scientific Reports, 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-92457-9

S. Sekar, S. Suresh Kumar, S. Vigneshwaran, G. Velmurugan, Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers, 19 (2022)1772-1782. https://doi.org/10.1080/15440478.2020.1788487

B.E. Tokula, A.O. Dada, A.A. Inyinbor, K.S. Obayomi, O.S. Bello, U. Pal, Agro-waste based adsorbents as sustainable materials for effective adsorption of Bisphenol A from the environment: A review. Journal of Cleaner Production, 388 (2023) 135819. https://doi.org/10.1016/j.jclepro.2022.135819

S.A. Varghese, H. Pulikkalparambil, K. Promhuad, A. Srisa, Y. Laorenza, L. Jarupan, T. Nampitch, V. Chonhenchob, N. Harnkarnsujarit, Renovation of Agro-Waste for sustainable food packaging: A Review. Polymers, 15 (2023) 648. https://doi.org/10.3390/polym15030648

R. Shrivastava, N.K. Singh, Agro-wastes sustainable materials for wastewater treatment: Review of current scenario and approaches for India. Materials Today: Proceedings, 60 (2022) 552–558. https://doi.org/10.1016/j.matpr.2022.01.460

S. Birania, S. Kumar, N. Kumar, A.K. Attkan, A. Panghal, P. Rohilla, R. Kumar, Advances in development of biodegradable food packaging material from agricultural and agro‐industry waste. Journal of Food Process Engineering, 45 (2022) e13930. https://doi.org/10.1111/jfpe.13930

M. Iniguez-Moreno, M. Calderón-Santoyo, G. Ascanio, F.Z. Ragazzo-Calderón, R. Parra-Saldívar, J.A. Ragazzo-Sánchez, J.A. Ragazzo-Sánchez, Harnessing emerging technologies to obtain biopolymer from agro-waste: application into the food industry. Biomass Conversion and Biorefinery, (2023) 1–18. https://doi.org/10.1007/s13399-023-04785-7

Y.G. TG, S. Ballupete Nagaraju, M. Puttegowda, A. Verma, S.M. Rangappa, S. Siengchin Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass. Journal of Composites Science, 7 (2023) 242. https://doi.org/10.3390/jcs7060242

H.P.S.A. Khalil, E.B. Yahya, F. Jummaat, A.S. Adnan, N.G. Olaiya, S. Rizal, C.K. Abdullah, D. Pasquini, S. Thomas, Biopolymers based aerogels: A review on revolutionary solutions for smart therapeutics delivery. Progress in Materials Science, 131 (2023) 101014. https://doi.org/10.1016/j.pmatsci.2022.101014

V. Ganesan, V. Shanmugam, B. Kaliyamoorthy, S. Sanjeevi, S.K. Shanmugam, V. Alagumalai, Y. Krishnamoorthy, M. Försth, G. Sas, S.M.J. Razavi, O. Das, Optimisation of mechanical properties in saw-dust/woven-jute fibre/polyester structural composites under liquid nitrogen environment using response surface methodology. Polymers, 13 (2021). https://doi.org/10.3390/polym13152471

Y. Liu, S. Ahmed, D.E. Sameen, Y. Wang, R. Lu, J. Dai, S. Li, W. Qin, A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112 (2021) 532–546. https://doi.org/10.1016/j.tifs.2021.04.016

S. Suresh Kumar, S. Thirumalai Kumaran, G. Velmurugan, A. Perumal, S. Sekar, M. Uthayakumar, Physical and mechanical properties of various metal matrix composites: A review. Materials Today: Proceedings, 50 (2021) 1022–1031. https://doi.org/10.1016/j.matpr.2021.07.354

N. Lakshmaiya, S. Kaliappan, P.P. Patil, V. Ganesan, J.A. Dhanraj, C. Sirisamphanwong, T. Wongwuttanasatian, S. Chowdhury, S. Channumsin, M. Channumsin, K. Techato, Influence of Oil Palm Nano Filler on Interlaminar Shear and Dynamic Mechanical Properties of Flax/Epoxy-Based Hybrid Nanocomposites under Cryogenic Condition, Coatings. 12 (2022) 1675. https://doi.org/10.3390/coatings12111675

S.B. Nagaraju, H.C. Priya, Y.G.T. Girijappa, M. Puttegowda, 9-Lightweight and sustainable materials for aerospace applications. Lightweight and Sustainable Composite Materials, Elsevier, (2023) 157–178. https://doi.org/10.1016/B978-0-323-95189-0.00007-X

A. Das, T. Ringu, S. Ghosh, N. Pramanik, A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polymer Bulletin, 80 (2023) 7247–7312. https://doi.org/10.1007/s00289-022-04443-4

J. Ma, J. He, X. Kong, J. Zheng, L. Han, Y. Liu, Z. Zhu, Z. Zhang, From agricultural cellulosic waste to food delivery packaging: A mini-review. Chinese Chemical Letters, 34 (2023) 107407. https://doi.org/10.1016/j.cclet.2022.04.005

E. Padoan, E. Montoneri, G. Bordiglia, V. Boero, M. Ginepro, P. Evon, C. Vaca-Garcia, G. Fascella, M. Negre, Waste biopolymers for eco-friendly agriculture and safe food production. Coatings, 12 (2022) 239. https://doi.org/10.3390/coatings12020239

Z. Ding, V. Kumar, T. Sar, S. Harirchi, A.M. Dregulo, R. Sirohi, R. Sindhu, P. Binod, X. Liu, Z. Zhang, M.J. Taherzadeh, M.K. Awasthi, Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. Bioresource Technology, (2022) 128058. https://doi.org/10.1016/j.biortech.2022.128058

P. Choudhary, A. Pathak, P. Kumar, N. Sharma, Commercial production of bioplastic from organic waste–derived biopolymers viz-a-viz waste treatment: A minireview. Biomass Conversion and Biorefinery, (2022) 1–11. https://doi.org/10.1007/s13399-022-03145-1

A. Agarwal, B. Shaida, M. Rastogi, N.B. Singh, Food packaging materials with special reference to biopolymers-properties and applications. Chemistry Africa, 6 (2023) 117–144. https://doi.org/10.1007/s42250-022-00446-w

H. Rana, A. Sharma, S. Dutta, S. Goswami, Recent Approaches on the Application of Agro Waste Derived Biocomposites as Green Support Matrix for Enzyme Immobilization. Journal of Polymers and the Environment, 30 (2022) 4936–4960. https://doi.org/10.1007/s10924-022-02574-3

X. Xie, Z. Zhou, Y. Yan, Flexural properties and impact behaviour analysis of bamboo cellulosic fibers filled cement based composites. Construction and Building Materials, 220 (2019) 403–414. https://doi.org/10.1016/j.conbuildmat.2019.06.029

K.R. Sumesh, K. Kanthavel, V. Kavimani, Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. International Journal of Biological Macromolecules, 150 (2020) 775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.118

Y. Liu, J. Xie, N. Wu, Y. Ma, C. Menon, J. Tong, Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose, 26 (2019) 4707-4719. https://doi.org/10.1007/s10570-019-02429-6

B. Aaliya, K.V. Sunooj, M. Lackner, Biopolymer composites: a review. International Journal of Biobased Plastics, 3 (2021) 40–84. https://doi.org/10.1080/24759651.2021.1881214

J.X. Chan, J.F. Wong, A. Hassan, Z. Zakaria, 8 - Bioplastics from agricultural waste. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications, (2021)141–169. https://doi.org/10.1016/B978-0-12-819953-4.00005-7

N.S.N. Arman, R.S. Chen, S. Ahmad, Review of state-of-the-art studies on the water absorption capacity of agricultural fiber-reinforced polymer composites for sustainable construction. Construction and Building Materials, 302 (2021) 124174. https://doi.org/10.1016/j.conbuildmat.2021.124174

N. Lakshmaiya, V. Ganesan, P. Paramasivam, S. Dhanasekaran, Influence of Biosynthesized Nanoparticles Addition and Fibre Content on the Mechanical and Moisture Absorption Behaviour of Natural Fibre Composite. Applied Sciences, 12(24), (2022) 13030. https://doi.org/10.3390/app122413030

Y. Zhou, J. Chen, X. Liu, J. Xu, Three/Four [Dimensional Printed PLA Nano/Microstructures: Crystallization Principles and Practical Applications. International Journal of Molecular Sciences, 24 (2023) 13691. https://doi.org/10.3390/ijms241813691

R. Brunšek, D. Kopitar, I. Schwarz, P. Marasović, Biodegradation Properties of Cellulose Fibers and PLA Biopolymer. Polymers, 15(17) (2023) 3532. https://doi.org/10.3390/polym15173532

S. Ramanadha reddy, N. Venkatachalapathi, A review on characteristic variation in PLA material with a combination of various nano composites. Materials Today: Proceedings, (2023). https://doi.org/10.1016/j.matpr.2023.04.616

V. Ganesan, V. Shanmugam, V. Alagumalai, Composites Part C : Open Access Optimisation of mechanical behaviour of Calotropis gigantea and Prosopis juliflora natural fibre-based hybrid composites by using Taguchi-Grey relational analysis, Composites Part C: Open Access. 13 (2024) 100433. https://doi.org/10.1016/j.jcomc.2024.100433

E. Finocchio, C. Moliner, A. Lagazzo, S. Caputo, E. Arato, Water absorption behavior and physico‐chemical and mechanical performance of PLA‐based biopolymers filled with degradable glass fibers. Journal of Applied Polymer Science, 140 (2023) e54578. https://doi.org/10.1002/app.54578

T.A. Swetha, A. Bora, K. Mohanrasu, P. Balaji, R. Raja, K. Ponnuchamy, G. Muthusamy, A. Arun, A comprehensive review on polylactic acid (PLA)–Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 234 (2023) 123715. https://doi.org/10.1016/j.ijbiomac.2023.123715

G. Velmurugan, J.S. Chohan, S.A. Muhammed Abraar, R. Sathish, S. Senthil Murugan, M. Nagaraj, S. Suresh Kumar, V. Siva Shankar, D. Elil Raja, Investigation of Nano SiO2 Filler Loading on Mechanical and Flammability Properties of Jute-Based Hybrid Polypropylene Composites. Silicon, 15 (2023) 7247–7263. https://doi.org/10.1007/s12633-023-02578-1

L. Natrayan, S. Kaliappan, B.S. Sethupathy, S. Sekar, P.P. Patil, G. Velmurugan, T. Tariku Olkeba, Effect of Mechanical Properties on Fibre Addition of Flax and Graphene-Based Bionanocomposites. International Journal of Chemical Engineering, 2022 (2022). https://doi.org/10.1155/2022/5086365

G. Velmurugan, S.S. Kumar, J.S. Chohan, A.J.P. Kumar, T. Manikandan, D.E. Raja, K. Saranya, M. Nagaraj, P. Barmavatu, Experimental Investigations of Mechanical and Dynamic Mechanical Analysis of Bio-synthesized CuO/Ramie Fiber-Based Hybrid Biocomposite, Fibers and Polymers. (2023). https://doi.org/10.1007/s12221-023-00432-0

G. Velmurugan, V. Siva Shankar, M. Nagaraj, M. Abarna, B. Rupa, S.K. Raheena, Investigate the effectiveness of aluminium trihydrate on the mechanical properties of hemp/polyester based hybrid composites. Materials Today: Proceedings, 72 (2023) 2322–2328. https://doi.org/10.1016/j.matpr.2022.09.399

A. Grylewicz, T. Spychaj, M. Zdanowicz, Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Composites Part A: Applied Science and Manufacturing, 121 (2019) 517–524. https://doi.org/10.1016/j.compositesa.2019.04.001

A.F. Osman, L. Siah, A.A. Alrashdi, A. Ul-Hamid, I. Ibrahim, Improving the tensile and tear properties of thermoplastic starch/dolomite biocomposite film through sonication process. Polymers, 13(2), (2021) 274. https://doi.org/10.3390/polym13020274

G. Velmurugan, V. Siva Shankar, M. Kalil Rahiman, D. Elil Raja, M. Nagaraj, T.J. Nagalakshmi, Experimental Investigation of High Filler Loading of SiO2 on the Mechanical and Dynamic Mechanical Analysis of Natural PALF fibre-Based Hybrid Composite. Silicon, 15 (2023) 5587–5602. https://doi.org/10.1007/s12633-023-02464-w

G. Velmurugan, V. Siva Shankar, M. Kalil Rahiman, R. Prathiba, L.R. Dhilipnithish, F.A. Khan, Effectiveness of silica addition on the mechanical properties of jute/polyester based natural composite, Materials Today: Proceedings, 72(4), (2023) 2075–2081. https://doi.org/10.1016/j.matpr.2022.08.138

S. Wang, P. Zhang, Y. Li, J. Li, X. Li, J. Yang, M. Ji, F. Li, C. Zhang, Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers, 307, (2023) 120627. https://doi.org/10.1016/j.carbpol.2023.120627

M.M. Reza, H.A. Begum, A.J. Uddin, Potentiality of sustainable corn starch-based biocomposites reinforced with cotton filter waste of spinning mill. Heliyon, 9 (2023) 27. https://dx.doi.org/10.2139/ssrn.4335483

E. Pérez-Pacheco, C.R. Rios-Soberanis, J.H. Mina-Hernández, V.M. Moo‑Huchin, Use of cellulose fiber from Jipijapa (Carludovicapalmata) as fillers in corn starch-based biocomposite film. Iranian Polymer Journal, 33, (2024) 157-168. https://doi.org/10.1007/s13726-023-01244-y

B. Aaliya, K.V. Sunooj, A. Vijayakumar, P. Krina, M. Navaf, P.P. Akhila, P. Raviteja, S. Mounir, M. Lackner, J. George, M.R. Nemțanu, Fabrication and characterization of talipot starch-based biocomposite film using mucilages from different plant sources: A comparative study. Food Chemistry, 438, (2023) 138011. https://doi.org/10.1016/j.foodchem.2023.138011

C.M. Chan, D. Martin, E. Gauthier, P. Jensen, B. Laycock, S. Pratt, Utilisation of Paunch Waste as a Natural Fibre in Biocomposites. Polymers, 14(18) (2022) 3704. https://doi.org/10.3390/polym14183704

V. Alagumalai, V. Shanmugam, N.K. Balasubramanian, Y. Krishnamoorthy, V. Ganesan, M. Försth, G. Sas, F. Berto, A. Chanda, O. Das, Impact response and damage tolerance of hybrid glass/kevlar-fibre epoxy structural composites. Polymers, 13(16), (2021) 2591. https://doi.org/10.3390/polym13162591

M. Wan, S. Liu, D. Huang, Y. Qu, Y. Hu, Q. Su, W. Zheng, X. Dong, H. Zhang, Y. Wei, W. Zhou, Biocompatible heterogeneous bone incorporated with polymeric biocomposites for human bone repair by 3D printing technology. Journal of Applied Polymer Science, 138(13), (2021) 50114. https://doi.org/10.1002/app.50114

A. Pudełko, P. Postawa, T. Stachowiak, K. Malińska, D. Drozdz, Waste derived biochar as an alternative filler in biocomposites - Mechanical, thermal and morphological properties of biochar added biocomposites. Journal of Cleaner Production, 278 (2021). https://doi.org/10.1016/j.jclepro.2020.123850

G. Velmurugan, L. Natrayan, Experimental investigations of moisture diffusion and mechanical properties of interply rearrangement of glass/Kevlar-based hybrid composites under cryogenic environment. Journal of Materials Research and Technology, 23 (2023) 4513–4526. https://doi.org/10.1016/j.jmrt.2023.02.089

T.G. Yashas Gowda, S. Ballupete Nagaraju, M. Puttegowda, A. Verma, S.M. Rangappa, & S. Siengchin, Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass. Journal of Composites Science, 7(6) (2023) 242. https://doi.org/10.3390/jcs7060242

S. Agarwal, S. Singhal, C.B. Godiya, S. Kumar, Prospects and applications of starch based biopolymers. International Journal of Environmental Analytical Chemistry, 103 (2023) 6907–6926. https://doi.org/10.1080/03067319.2021.1963717

S.N. Kumar, R. Jain, K. Anand, H. Ajay Kumar, Utilization of Agro Waste for the Fabrication of Bio Composites and Bio plastics—Towards a Sustainable Green Circular Economy. In: Sandhu, K., Singh, S., Prakash, C., Subburaj, K., Ramakrishna, S. (eds) Sustainability for 3D Printing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-75235-4_7

Z. Tabassum, A. Mohan, N. Mamidi, A. Khosla, A. Kumar, P.R. Solanki, T. Malik, M. Girdhar, Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnology, 17(3), (2023) 127–153. https://doi.org/10.1049/nbt2.12122

K.F. Chai, W.N. Chen, Potential of food and agricultural wastes as sustainable medical materials for neural tissue engineering. Current Opinion in Biomedical Engineering, 28 (2023) 100476. https://doi.org/10.1016/j.cobme.2023.100476

Downloads

Published

2024-01-30

How to Cite

G, V. (2024) “A Short Review on the Growth of Lightweight Agronomic Surplus Biomass Composites for Ecological Applications Using Biopolymers”, International Research Journal of Multidisciplinary Technovation, 6(1), pp. 140–154. doi:10.54392/irjmt24111.