A Quantum Chemical Investigation on Structural, Spectroscopic and Nonlinear Optical properties of an Organic Molecule Serotonin

Authors

  • Thayala Sanker R Department of Chemistry, JCT College of Engineering and Technology, Pichanur, Coimbatore-641105, India Author
  • Arunachalam S Department of Electrochemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India Author
  • Raju S Department of Physics, KPR Institute of Engineering and Technology, Coimbatore-641407, Tamil Nadu, India Author
  • Velayutham Pillai M Post Graduate Department of Chemistry, Nallamuthu Gounder Mahalingam College, Pollachi-642001, Tamil Nadu, India Author
  • Kumaresan R Department of Chemistry, Jai Shriram Engineering college, Tirupur-638660, Tamil Nadu, India Author

DOI:

https://doi.org/10.54392/irjmt24112

Keywords:

Nonlinear Optics, Serotonin, HOMO-LUMO, TD-DFT

Abstract

Serotonin, a neurotransmitter known for promoting feelings of happiness and optimism, was the subject of theoretical studies conducted using Gaussian software. In these experiments, the 6-311++G/B3LYP basis set was employed. The finite-field-based B3LYP/6-311++G (d,p) approach was used to compute the first-order hyper polarizability and associated properties of this chemical system. Additionally, a Natural Bond Orbital (NBO) analysis was conducted to assess the molecule's stability, taking into account hyper conjugative interactions and charge delocalization. Additionally, HOMO-LUMO energy levels were computed to assess whether a chemical exhibits electrophilic or nucleophilic characteristic. TD-DFT simulations were conducted to examine the electrical and optical characteristics of the material, including absorption wavelengths and excitation energy. Subsequently, the chemical compound's electrophilic or nucleophilic nature was determined by calculating the molecular electrostatic potential (MEP).

References

L.F. Mohammad-Zadeh, L. Moses, S.M. Gwaltney-Brant, Serotonin: a review. Journal of Veterinary Pharmacology and Therapeutics, 31(3), (2008) 187–199. https://doi.org/10.1111/j.1365-2885.2008.00944.x

M.A. Geyer, & F.X. Vollenweider, Serotonin research: contributions to understanding psychoses. Trends in pharmacological sciences, 29(9), 2008) 445-453. https://doi.org/10.1016/j.tips.2008.06.006

M. Paulmichl, F. Friedrich, E. Woll, H. Weiss, F. Lang, Effects of serotonin on electrical properties of Madin-Darby canine kidney cells. Pflugers Archiv, 411, (1988) 394-400. https://doi.org/10.1007/BF00587718

S. K. Kaushalya, Suman Nag, J. Balaji, S. Maiti, Serotonin: Multiphoton Imaging and Relevant Spectral Data. Multiphoton Microscopy in the Biomedical Sciences VIII, 6860, (2008) 223-230. https://doi.org/10.1117/12.763020

H.A. Lechner, D.A. Baxter, J.W. Clark, J.H. Byrne, Bistability and Its Regulation by Serotonin in the Endogenously Bursting Neuron Rl5 in Aplysia, Journal of neurophysiology, 75(2), (1996) 957-962. https://doi.org/10.1152/jn.1996.75.2.957

J. Best, H.F. Nijhout, M. Reed, Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theoretical Biology and Medical Modelling, 7, (2010) 1-26. https://doi.org/10.1186/1742-4682-7-34

C. Cabezas, M. Varela, I. Pena, J.C. Lopez, J.L. Alonso, The microwave spectrum of neurotransmitter serotonin. Physical Chemistry Chemical Physics, 14(39), (2012) 13618-13623. https://doi.org/10.1039/C2CP42654D

N. Schweighofer, S.C. Tanaka, K. Doya, Serotonin and the evaluation of future rewards: theory, experiments, and possible neural mechanisms. Annals of the New York Academy of Sciences, 1104(1), (2007) 289-300. https://doi.org/10.1196/annals.1390.011

K.W. Kaufmann, E.S. Dawson, L.K. Henry, J.R. Field, R.D. Blakely, J. Meiler, Structural determinants of species‐selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies. Proteins: Structure, Function, and Bioinformatics, 74(3), (2009) 630-642. https://doi.org/10.1002/prot.22178

A. Joshi, D.H. Wang, S. Watterson, P.L. McClean, C.K. Behera, T. Sharp, K. Wong-Lin, Opportunities for multiscale computational modelling of serotonergic drug effects in Alzheimer's disease. Neuropharmacology, 174, (2020) 108118. https://doi.org/10.1016/j.neuropharm.2020.108118

S. Krishna Priya, R. Karunathan, E. Shobhana, B. Babu, R. Kesavasamy, S. Akila, M. Karpagavalli, A quantum chemical analysis of an organic compound: 3,5- bis (4-hydroxy phenyl)-2,4,6-trimethyl cyclohexanone, AIP Conference Proceedings 2446, (2022) https://doi.org/10.1063/5.0108265

F.S. Manciu, J. D. Ciubuc, E.M. Sundin, C. Qiu, K.E. Bennet, Analysis of Serotonin Molecules on Silver Nanocolloids—A Raman Computational and Experimental Study. Sensors, 17(7), (2017) 1471. https://doi.org/10.3390/s17071471

A. Prah, M. Purg, J. Stare, R.Vianello, J. Mavri,. How monoamine oxidase A decomposes serotonin: an empirical valence bond simulation of the reactive step. The Journal of Physical Chemistry B, 124(38), (2020) 8259-8265. https://doi.org/10.1021/acs.jpcb.0c06502

M.C. Reed, H.F. Nijhout, J. Best, (2013). Computational studies of the role of serotonin in the basal ganglia. Frontiers in Integrative Neuroscience, 7, 41. https://doi.org/10.3389/fnint.2013.00041

A. Rathore, V. Asati, M. Mishra, R. Das, V. Kashaw, S.K. Kashaw, Computational approaches for the design of novel dopamine D2 and serotonin 5-HT2A receptor dual antagonist towards schizophrenia. In Silico Pharmacology, 10(1), (2022) 7. https://doi.org/10.1007/s40203-022-00121-5

T. Zeppelin, L.K. Ladefoged, S. Sinning, B. Schiøtt, Substrate and inhibitor binding to the serotonin transporter: Insights from computational, crystallographic, and functional studies. Neuropharmacology, 161 (2019) 107548. https://doi.org/10.1016/j.neuropharm.2019.02.030

N.S. Yaakob, D.T. Nguyen, B. Exintaris, H.R. Irving, The C and E subunits of the serotonin 5-HT3 receptor subtly modulate electrical properties of the receptor. Biomedicine & Pharmacotherapy, 97, (2018) 1701-1709. https://doi.org/10.1016/j.biopha.2017.12.010

S. Sevvanthi, S. Muthu, S. Aayisha, P. Ramesh, M. Raja, Spectroscopic (FT-IR, FT-Raman and UV-Vis), computational (ELF, LOL, NBO, HOMO-LUMO, Fukui, MEP) studies and molecular docking on benzodiazepine derivatives- heterocyclic organic arenes. Chemical Data Collections, 30, (2020) 100574, https://doi.org/10.1016/j.cdc.2020.100574

H. Safia, L. Ismahan, G. Abdelkrim, C. Mouna, N. Leila, M. Fatiha, Density functional theories study of the interactions between host β-Cyclodextrin and guest 8-Anilinonaphthalene-1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. Journal of Molecular Liquids, 280, (2019) 218-229. https://doi.org/10.1016/j.molliq.2019.01.019

M. Buvaneswari, R. Santhakumari, C. Usha, R. Jayasree, Suresh Sagadevan, Synthesis, growth, structural, spectroscopic, optical, thermal, DFT, HOMO–LUMO, MEP, NBO analysis and thermodynamic properties of vanillin isonicotinic hydrazide single crystal, Journal of Molecular Structure, 1243 (2021), 130856. https://doi.org/10.1016/j.molstruc.2021.130856

F. Basha, F.L.A. Khan, S. Muthu, M. Raja, Computational evaluation on molecular structure (Monomer, Dimer), RDG, ELF, electronic (HOMO-LUMO, MEP) properties, and spectroscopic profiling of 8-Quinolinesulfonamide with molecular docking studies. Computational and Theoretical Chemistry, 1198, (2021)113169. https://doi.org/10.1016/j.comptc.2021.113169

M.A. Mumit, T.K. Pal, M.A. Alam, M.A.A.A.A. Islam, S. Paul, M.C. Sheikh, DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2, 4, 5-trimethoxyphenylmethylene) hydrazinecarbodithioate. Journal of molecular structure, 1220, (2020) 128715. https://doi.org/10.1016/j.molstruc.2020.128715

A. Dwivedi, A. Kumar, Molecular Docking and Comparative Vibrational Spectroscopic Analysis, HOMO-LUMO, Polarizabilities, and Hyperpolarizabilities of N-(4- Bromophenyl)-4-Nitrobenzamide by Different DFT (B3LYP, B3PW91, and MPW1PW91) Methods. Polycyclic Aromatic Compounds, 41(2), (2021) 387-399. https://doi.org/10.1080/10406638.2019.1591466

V. Anbu, R. Karunathan, K.A. Vijayalakshmi, A. David Stephen, P.V. Nidhin, Explosives properties of high energetic Trinitrophenyl Nitramide molecules: A DFT and AIM analysis, Arabian Journal of Chemistry, 12(5), (2019) 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

T. Karthick, V. Balachandran, S. Perumal, A. Nataraj, Rotational isomers, vibrational assignments, HOMO–LUMO, NLO properties and molecular electrostatic potential surface of N-(2 bromoethyl) phthalimide, Journal of Molecular Structure, 1005 (2011) 202–213, https://doi.org/10.1016/j.molstruc.2011.08.051

S. Aslam, M. Haroon, T. Akhtar, M. Arshad, M. Khalid, Z. Shafiq, M. Imran, Ullah, A. Synthesis, Characterization, and DFT-Based Electronic and Nonlinear Optical Properties of Methyl 1‑(arylsulfonyl)-2-aryl-1Hbenzo[d]imidazole-6-carboxylates, American Chemical Society, 7(35), (2022) 31036-31046.

M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey, F. Hatamjafari, Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45(1-2), (2021) 147-158. https://doi.org/10.1177/1747519820932091

N. Choudhary, S. Bee, A. Gupta, P. Tandon, Comparative vibrational spectroscopic studies, HOMO–LUMO and NBO analysis of N-(phenyl)-2, 2-dichloroacetamide, N-(2-chloro phenyl)-2, 2-dichloroacetamide and N-(4-chloro phenyl)-2, 2-dichloroacetamide based on density functional theory. Computational and Theoretical Chemistry, 1016, (2013) 8-21. https://doi.org/10.1016/j.comptc.2013.04.008

H. AlRabiah, S. Muthu, F. Al-Omary, A.M. Al-Tamimi, M. Raja, R.R.Muhamed, A.A.R. El-Emam, Molecular structure, vibrational spectra, NBO, Fukui function, HOMO-LUMO analysis and molecular docking study of 6-[(2-methylphenyl) sulfanyl]-5-propylpyrimidine-2, 4 (1H, 3H)-dione. Macedonian Journal of Chemistry and Chemical Engineering, 36(1), (2017) 59-80. https://doi.org/10.20450/mjcce.2017.1001

B.F. Rizwana, J.C. Prasana, S. Muthu, C.S. Abraham, Spectroscopic (FT-IR, FT-Raman, NMR) investigation on 2-[(2-amino-6-oxo-6, 9-dihydro-3H-purin-9-yl) methoxy] ethyl (2S)-2-amino-3-methylbutanoate by Density Functional Theory. Materials Today: Proceedings, 18, (2019) 1770-1782. https://doi.org/10.1016/j.matpr.2019.05.276

V. Mohanraj, P. Sakthivel, S. Ponnuswamy, P. Muthuraja, M. Dhandapani, Growth, spectral, thermal, NLO studies and computational studies on novel NLO organic crystals of N-Nitroso-r-2, c-6-bis (4-methoxyphenyl)-t-3-ethyl-piperidin-4-one. Materials Today: Proceedings, 8, (2019) 1-10. https://doi.org/10.1016/j.matpr.2019.02.074

R. Sreedharan, S. Ravi, K.R. Raghi, T.M. Kumar, K. Naseema, Growth, linear-nonlinear optical studies and quantum chemistry formalism on an organic NLO crystal for opto-electronic applications: experimental and theoretical approach. SN Applied Sciences, 2, (2020) 1-18. https://doi.org/10.1007/s42452-020-2360-9

N. Arif, Z. Shafiq, S. Noureen, M. Khalid, A. Ashraf, M. Yaqub, S.R. Al-Mhyawi, Synthesis, spectroscopic, SC-XRD/DFT and non-linear optical (NLO) properties of chromene derivatives. RSC advances, 13(1), (2023) 464-477. https://doi.org/10.1039/D2RA07134G

S. Munsif, S. Khan, A. Ali, M.A. Gilani, J. Iqbal, R. Ludwig, K. Ayub, Remarkable nonlinear optical response of alkali metal doped aluminum phosphide and boron phosphide nanoclusters. Journal of Molecular Liquids, 271 (2018) 51-64. https://doi.org/10.1016/j.molliq.2018.08.121

N. Karthikeyan, J. Joseph Prince, S. Ramalingam, S. Periandy, Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR - Mass spectroscopic analysis of Terephthalic acid using quantum Gaussian calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, (2015) 229-242. http://dx.doi.org/10.1016/j.saa.2014.11.112

M.S. Kodikara, R. Stranger, M.G. Humphrey, Computational studies of the nonlinear optical properties of organometallic complexes. Coordination Chemistry Reviews, 375, (2018) 389-409. https://doi.org/10.1016/j.ccr.2018.02.007

H. Abbas, M. Shkir, S. AlFaify, Density functional study of spectroscopy, electronic structure, linear and nonlinear optical properties of l-proline lithium chloride and l-proline lithium bromide monohydrate: For laser applications. Arabian Journal of Chemistry, 12(8), (2019) 2336-2346. https://doi.org/10.1016/j.arabjc.2015.02.011

S. Sambandam, B. Sarangapani, S. Paramasivam, R. Chinnaiyan, Molecular structure, vibrational spectral investigations (FT-IR and FT-Raman), NLO, NBO, HOMO-LUMO, MEP analysis of (E)-2-(3-pentyl-2, 6-diphenylpiperidin-4-ylidene)-N-phenylhydrazinecarbothioamide based on DFT and molecular docking studies. Biointerface Research in Applied Chemistry, 11 (2021) 11833-11855. https://doi.org/10.33263/BRIAC114.1183311855

C. Karnan, K.S. Nagaraja, S. Manivannan, A. Manikandan, V. Ragavendran, Crystal structure, spectral investigations, DFT and antimicrobial activity of brucinium benzilate (BBA). Journal of Molecular Modeling, 27, (2021) 1-11. https://doi.org/10.21203/rs.3.rs-343924/v1

T. Dey, K.S.S. Praveena, S. Pal, A.K. Mukherjee, three oxime ether derivatives: Synthesis, crystallographic study, electronic structure and molecular electrostatic potential calculation. Journal of Molecular Structure, 1137, (2017) 615-625. https://doi.org/10.1016/j.molstruc.2017.02.089

R. Zaier, S. Hajaji, M. Kozaki, S. Ayachi, DFT and TD-DFT studies on the electronic and optical properties of linear π-conjugated cyclopentadithiophene (CPDT) dimer for efficient blue OLED. Optical Materials, 91, (2019) 108-114. https://doi.org/10.1016/j.optmat.2019.03.013

H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, M. Kashani, Z. Chavoshpour-Natanzi, Z. Kazemi, V. Mirkhani, A. Sahraei, M.N. Tahir, M. Ashfaq, K.S. Munawar, Synthesis, characterization, crystal structures, DFT, TD-DFT, molecular docking and DNA binding studies of novel copper(II) and zinc(II) complexes bearing halogenated bidentate N,O-donor Schiff base ligands. Polyhedron, 195, (2021) 114988. https://doi.org/10.1016/j.poly.2020.114988

S. Bibi, F. Farooq, F.Q. Bai, H.X. Zhang, DFT and TD-DFT studies of phenothiazine based derivatives as fluorescent materials for semiconductor applications, Shamsa Bibi, Faiza Farooq, Shafiq-ur-Rehman, Fu Quan Bai, Hong-Xing Zhang, Materials Science in Semiconductor Processing, 134, (2021) 106036. https://doi.org/10.1016/j.mssp.2021.106036

Downloads

Published

2024-01-30

How to Cite

R, T.S. (2024) “A Quantum Chemical Investigation on Structural, Spectroscopic and Nonlinear Optical properties of an Organic Molecule Serotonin”, International Research Journal of Multidisciplinary Technovation, 6(1), pp. 155–171. doi:10.54392/irjmt24112.