Exploring the Impact of TiO2 and MgO Nanoparticles on the Mechanical and Topographical Characteristics of Glass Fiber Reinforced Polymer (GFRP) Composites with Varied Lay-up Sequences: A Taguchi Analysis

Authors

  • Somaiah A Department of Mechanical Engineering, J.N.T. University, Kukatpally, Hyderabad-500085, India Author https://orcid.org/0000-0002-8107-2676
  • Anjaneya Prasad B Department of Mechanical Engineering, J.N.T. University, Kukatpally, Hyderabad-500085, India Author
  • Kishore Nath N Advanced Systems Laboratory, DRDO, Kanchanbagh, Hyderabad-500058, India Author

DOI:

https://doi.org/10.54392/irjmt2426

Keywords:

TiO2, MgO, Taguchi’s Approach, ANOVA, Stacking sequence

Abstract

A revolutionary composite material, blending Glass Fiber Reinforced Polymer (GFRP) with advanced nanofillers like TiO2 and MgO, showcases remarkable versatility in various industries due to its unique properties. The process involves precise control of key factors, including fiber stacking sequence (F.S.S) and nanofiller integration (MgO and TiO2). The vacuum bagging process is employed in the production of nanocomposite laminates. Experimental studies have been conducted to assess the performance of composites with and without nanofillers, with a specific focus on crucial mechanical properties, namely ultimate tensile strength (U.T.S), flexural strength (F.S), impact strength (I.S), and hardness (H). The Taguchi L9 orthogonal array design optimizes parameters and enhances mechanical properties. Comparisons reveal significant improvements with nanofillers, including a 31.96% increase in ultimate tensile strength and a substantial 68.43% enhancement in flexural strength. ANOVA results highlight the critical impact of fiber stacking sequence on ultimate tensile strength (63.65%), flexural strength (65.70%), and impact strength (9.30%), while nanofillers play a lesser role, contributing 11.71% to ultimate tensile strength, 2.66% to flexural strength, and 3.61% to impact strength. Notably, in composite hardness, nanofillers play a more significant role, contributing 39.22%, while the influence of fiber stacking sequence is lower at 3.29%.

References

R. Sundarakannan, K. Balamurugan, Y. Jyothi, V. Arumugaprabu, T. Sathish, Z. Mahmoud, El S. Yousef, D. Basheer, S. Shaik, Importance of Fiber-/Nanofiller-Based Polymer Composites in Mechanical and Erosion Performance: A Review. Journal of Nanomaterials, 2023, (2023). https://doi.org/10.1155/2023/3528977

G. Lawal, C. Kuforiji, S. Durowaye, K. Kassim, Study of the mechanical properties of bamboo and glass fiber reinforced hybrid polymer matrix composites. Kathmandu University Journal of Science Engineering and Technology, 17(1), (2023) 1-5.

C. Rajesh Chandra, S.K. Jagadeesh, D. Aravinda, H. Jayanth, Mechanical and Three Body Abrasive Wear Behaviour of Nano-Filler Filled, Chopped Glass Fiber Filled Hybrid Composites. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 9(6), (2022) 292-299. https://doi.org/10.32628/IJSRSET229651

A.A. Rajhi, Mechanical Characterization of Hybrid Nano-Filled Glass/Epoxy Composites. Polymers, 14(22), (2022) 4852. https://doi.org/10.3390/polym14224852

M. Ramesh, L.N. Rajeshkumar, N. Srinivasan, D.V. Kumar, & D. Balaji, Influence of filler material on properties of fiber-reinforced polymer composites: A review. E-Polymers, 22(1), (2022) 898-916. https://doi.org/10.1515/epoly-2022-0080

A. Rakhman, K. Diharjo, W.W. Raharjo, V. Suryanti, S. Kaleg, Improvement of Fire Resistance and Mechanical Properties of Glass Fiber Reinforced Plastic (GFRP) Composite Prepared from Combination of Active Nano Filler of Modified Pumice and Commercial Active Fillers. Polymers, 15(1), (2023) 51. https://doi.org/10.3390/polym15010051

H.I. Elkhouly, E.M. Ali, M.N. El-Sheikh, An investigated organic and inorganic reinforcement as an effective economical filler of poly (methyl methacrylate) nanocomposites. Scientific Reports, 12, (2022) 16416. https://doi.org/10.1038/s41598-022-20393-3

J. Guo, M. Cao, W. Ren, H. Wang, & Y. Yu, Mechanical, dynamic mechanical and thermal properties of TiO2 nanoparticles treatment bamboo fiber-reinforced polypropylene composites. Journal of Materials Science, 56, (2021) 12643–12659. https://doi.org/10.1007/s10853-021-06100-z

R. Balasubramanya, R.R.N.S. Bhattacharya, & B.M. Madhu, Effect of Hybrid Fillers on GFRP Epoxy Composites with Water Immersion and Thermal Conditioning. Macromolecular Symposia, 398(1), (2021) 2000090. https://doi.org/10.1002/masy.202000090

K. Sravanthi, V. Mahesh, B. Nageswara Rao, Influence of micro and nano carbon fillers on impact behavior of GFRP composite materials. Materials Today: Proceedings, 37(2), (2020) 1075-1078. https://doi.org/10.1016/j.matpr.2020.06.298

A.A.F. Ogaili, E.S. Al-Ameen, M.S. Kadhim, & M.N. Mustafa, Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Materials Science, 7(1), (2020) 93-102. https://doi.org/10.3934/matersci.2020.1.93

M.S. Alam, & M.A. Chowdhury, Characterization of epoxy composites reinforced with CaCO3-Al2O3-MgO-TiO2/CuO filler materials. Alexandria Engineering Journal, 59(6), (2020) 4121-4137. https://doi.org/10.1016/j.aej.2020.07.017

R. Olayil, V. Arumugaprabu, O. Das, & W.L. Anselm, A Brief Review on Effect of Nano fillers on Performance of Composites. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1059,d (2021) 012006. https://doi.org/10.1088/1757-899X/1059/1/012006

I.S. Shayea, J.R. Ugal, Influence of Some Nano-Inorganic Oxides on the Mechanical Properties of Epoxy Based Nano Composites. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 571, (2019) 012068. https://doi.org/10.1088/1757-899X/571/1/012068

B. Pani, P. Chandrasekhar, S. Singh, Investigation of erosion behaviour of an iron-mud filled glass-fibre epoxy hybrid composite. Bulletin of Materials Science, 42(217), (2019). https://doi.org/10.1007/s12034-019-1894-1

E. Kuram, Hybridization effect of talc/glass fiber as a filler in polycarbonate/acrylonitrile-butadiene-styrene composites. Composites Part B: Engineering, 173, (2019) 106954. https://doi.org/10.1016/j.compositesb.2019.106954

K.N. Keya, N.A. Kona, & R.A. Khan, Fabrication, Mechanical Characterization and Interfacial Properties of Bamboo and E-glass Fiber Reinforced Polypropylene-based Composites. American Journal of Nanosciences, 5(4), (2019) 59-66. https://doi.org/10.11648/j.ajn.20190504.16

P.H. Usha Rani, B.M. Rajaprakash, N. Mohan, & M. Akshay Prasad, Study on thermal and erosive wear behaviour of hard powders filled glass-epoxy composite. Materials Today: Proceedings, 27(3), (2020) 2011-2016. https://doi.org/10.1016/j.matpr.2019.09.049

S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, & M.R. Sanjay, Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles, 49, (2020) 1036-1060. https://doi.org/10.1177/1528083718804207

S. Mutalikdesai, A. Hadapad, S. Patole, & G. Hatti, Fabrication and Mechanical Characterization of Glass fibre reinforced Epoxy Hybrid Composites using Fly ash/Nano clay/Zinc oxide as filler. IOP Conference Series: Materials Science and Engineering, 376, (2018) 012061. https://doi.org/10.1088/1757-899X/376/1/012061

B. Hulugappa, M.V. Achutha, B. Suresha, Effect of Fillers on Mechanical Properties and Fracture Toughness of Glass Fabric Reinforced Epoxy Composites. Journal of Minerals and Materials Characterization and Engineering, 4(1), (2016) 1-14. http://dx.doi.org/10.4236/jmmce.2016.41001

S.S. Moorthy, & K. Manonmani, Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite. International Journal of Mechanical and Mechatronics Engineering, 8, (2014) 119-123. https://doi.org/10.5281/zenodo.1090713

S. Kumar, S. Raju, N. Mohana, P.S. Sampath, & L.S. Jayakumari, Effects of Nanomaterials on Polymer Composites-An Expatiate View. Reviews on Advanced Materials Science, 38(1), (2014) 40-54.

R.K. Nayak, A. Dash, & B.C. Ray, Effect of Epoxy Modifiers (Al2O3/SiO2/TiO2) on Mechanical Performance of epoxy/glass Fiber Hybrid Composites. Procedia Materials Science, 6, (2014) 1359–1364. https://doi.org/10.1016/j.mspro.2014.07.115

G. Agarwal, A. Patnaik, & R. Sharma, Thermo-mechanical properties of silicon carbide filled chopped glass fiber reinforced epoxy composites. International Journal of Advanced Structural Engineering, 5, (2013) 21. https://doi.org/10.1186/2008-6695-5-21

K. Devendra, T. Rangaswamy, Strength Characterization of E-glass Fiber Reinforced Epoxy Composites with Filler Materials. Journal of Minerals and Materials Characterization and Engineering, 1(6), (2013) 353-357. http://dx.doi.org/10.4236/jmmce.2013.16054

N. Mohan, C.R. Mahesha, & B.M. Rajaprakash, Erosive Wear Behaviour of WC Filled Glass Epoxy Composites. Procedia Engineering, 68, (2013) 694–702. https://doi.org/10.1016/j.proeng.2013.12.241

S. Rao, & R. Rao, Cure studies on bifunctional epoxy matrices using a domestic microwave oven. Polymer Testing, 27(5), (2008) 645–652. https://doi.org/10.1016/j.polymertesting.2008.04.005

S.S. Yusuf, M.N. Islam, M.H. Ali, M.W. Akram, M.A. Siddique, Towards the optimization of process parameters for impact strength of natural fiber reinforced composites: Taguchi method, Advances in Materials Science, 20(2), (2020) 54-70. https://doi.org/10.2478/adms-2020-0010

M.I. Qazi, M. Abas, R. Khan, W. Saleem, C.I. Pruncu, & M. Omair, Experimental Investigation and Multi-Response Optimization of Machinability of AA5005H34 Using Composite Desirability Coupled with PCA. Metals, 11(2), (2021) 235. https://doi.org/10.3390/met11020235

P. Sivaiah, & D. Chakradhar, Modeling and optimization of sustainable manufacturing process in the machining of 17-4 PH stainless steel. Measurement, 134, (2018) 142-152. https://doi.org/10.1016/j.measurement.2018.10.067

Downloads

Published

2024-06-01

How to Cite

A, S., B, A.P. and N, K.N. (2024) “Exploring the Impact of TiO2 and MgO Nanoparticles on the Mechanical and Topographical Characteristics of Glass Fiber Reinforced Polymer (GFRP) Composites with Varied Lay-up Sequences: A Taguchi Analysis”, International Research Journal of Multidisciplinary Technovation, 6(2), pp. 70–83. doi:10.54392/irjmt2426.